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In mathematical models, we often search for objects whose components satisfy certain constraints. Among the
constraint satisfaction problems the simplest ones are the systems containing only equations and inequalities as
constraints among the unknowns. We can be interested for satisfiability, i.e., for the existence of solutions, which
might be dependent on certain parameters or we can search for the constructive description of the entire solution
set. In this article we consider general algebraic systems over the reals.

It turns out that systems containing only algebraic equations and inequalities can be treated completely
algorithmically and the constructive characterization of the solution sets are possible. The latter description is
equivalent to an elimination of quantifiers from a logical formula which represents the system. The effective
construction of the solution set is only tractable even for problems with modest input size with the best hardware
and software environments. After the introduction of the problem (the elimination of quantifiers) and the
algorithm for its solution (cylindrical algebraic decomposition), we illustrate some field of applications.

Introduction

Let us start with the first-order language of (the) elementary of algebra, that is, we start with a language in which
where we can express the sum and the product of two elements, and additionally we can speak about the ordering
of the elements. To do so, we give the signature of the formal langugderdered rings]:

Lor={+, %, —, 0, 1;<}, where + and * are binary function symbols, - is arurfanction symbol, 0 and 1 are
constant symbols and < is a binary predicate symbol.

Following the usual inductive buildup of a logical language, we can define the terms, formulae and sentences of
the the languagé,,. E.g. ¢ + 1)=(1+ 0) is a term of the language <Ol is an atomic formula of the language
without variables, 9 (x+y=X)is a sentence, @=X+yxy—-4<0A yxy—2+x+2<0) js a formula of the

Xy y

language in which one free variable occurs.

We call any set of sentences a theory. I§ & theory (which usually consists of infinitely many formulaey, T,

and Tis the set of all consequences oftden we say that is an axiom system for.We call “ordered fields”

all those structures, which satisfy the axioms of ordering, the field axioms, and the axioms of monotonicity (they
are the models of the theory of ordered fields). Special ordered fields are the real closed fields. These structures
satisfy further axioms (axiom schemes), namely (1)-(3), the intuitive meaning of those additional axiom schemes
is as follows: (1) All polynomials with odd degree have a root, (2) -1 never equals to sum of some squares, (3) all
positive elements have a square root. The standard model for the theory of real closed fields (RCF) is the field of
real numbers Rwith the usual operations and ordering (more on the models of formal first-order theories and a
slightly different axiomatization of RCF can be found8], and [18]).
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(2) Forallmrel: ¥V Xx2+..+%°+1+0
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The main result for the RCF theory, first provenAlfred Tarski in the thirties is, that this theargmits quanti-
fier elimination, i.e. for any (arbitrarily quantfl) formula¢ of the languagé,there exists a formulg with the
following properties:

()¢ =y [RCFE ¢ < y]
(2) ¢ is quantifier free
(3) the free variables @f contained in the set of the free variableg.of

Remarks.
1. Exploiting the existence of a Prenex form ande thogical equivalencesY ¢=-3-¢and
X X

AP Vy)= (EId)\/Bz/r), it is not hard to see that it is enough to prdwe quantifier elimination theorem for

X X X

those formulae which have the following particularm: 3¢, where¢ is a quantifier free conjunction of the
X

atomic formula B 0, where each P is a polynomial expression of seemiables ang<{<,=}. The proof of the
theorem is still not obvious in this new setting.

2. If the original input formulap does not contain free variables, then neither dbesexisting equivalent
guantifier free formulay, consequently is a ground formula of the language; for grounaridae it is always
decidable whether they are true or not.

3. As a consequence of the point above (2), wehgestrong result that the theory of RCF is dduliela

We can prove the above quantifier elimination teeorin essentially two different ways. Either wg to
characterize with model-theoretic machinery trasslof theories which admits quantifier eliminataord then
prove additionally that RCF belongs to this cladss approach is really fruitful; but the abstrawidel theoretic
proof of the quantifier-elimination property doest give us a method which explicitly tells us hawdarry out
the elimination of the quantified variables. So denot follow it in this introductory article furgh, since our
motivation is the practical application of compstdor doing and teaching mathematics. A second cagbr
would be to give an explicit general algorithm fquantifier elimination and to prove the correctne$she
algorithm. In fact this path was followed alreadyTarski in his original papef [12], however a rafgorithmic
breakthrough came with G. E. Collins’ method in Heventies[[5], since the complexity of Collinsgalithm
was much better than Tarski's. Collins’ algorithrasafirst implemented in the QEPCAD program [QEPCBD
Collins, Brown et al.], which is now freely avdila in the internet [2]. An improved variant of talgorithm can
be currently found in the standard packages wiescomputer algebra systems [eMjathematica 5.0-; Strzebon-
ski or Reduce-Redlog; Weispfenning]. Due to thédaxis experience, the implementation availabMathemat-
ica has the best parameters for solving practicallprob, for the average user. Besides the good cartiquosl
performance, a further advantage is thatNtathematica computer algebra system has a flexible, nice feort,
so typing-in the problems and interpreting the atgps relatively easy.

Now let us connect the above description of thentfiar elimination with the constraint systems tthveere
mentioned in the abstract. We start with a relfti@mple example. Take a system consisting of tiwear
equations with integer coefficients, as

2X+y =1AX-y = 2.

If one is interested in the solvability of the gt then we simply quantify existentially both wadfes and
consider the input formula



Effective Real Quantifier Elimination 3

33 (2X+y==1AX-y ==2).
Xy

After the elimination of the quantified variableg et True (or 0==0), thus we decided (proved)stitésfiabil-
ity of the system. Taking rather universal as exisal quantifiers, we can prove identities andguredities as
well. Consider the well known inequality betweeffatient means:

vy ((2ey?) /2= (0cey)?/4).

If a theory is decidable, we may become suspicithes, only very few interesting mathematical protdeare
expressible in the frame of this formal theory dhds solvable automatically. We would like to destoate,
with some introductory examples, that this is het tase for RCF. The examples were tested Oatgematica
and QEPCAD. After the examples in which we only lgghe quantifier elimination method as a black-box
algorithm, we briefly describe the ‘effective’ Gab’ quantifier elimination algorithm and mentids characteris-
tic complexity properties.

2. Two introductory examples

Real roots of quadratics

First, let us characterize using the quantifiemalation method which polynomial with degree twalameal
coefficients has a real root. E.g. let our inpurtfula be

I3 x"2+px+q=0.
X

As an output we gain the following necessary arficgent condition for the free variables of thefaula:

p?>-4qz=0.

Resolve[3y (x"2+pX+( ==0), Real s]

-p?+4q=<0

REMARK 1

Mathematica 5.2-8.0: Usuage of the Resolve command.The nanmteeotommand which calls the quantifier
elimination algorithm isResolve", we hope that via the examples the input and ¢osyntax is clear.

Of course, we can also investigate with the metiadedn does a (formal) quadratic have two differeat roots:

3 (ax12+bx1+c:0Aax22+bx2+c:0/\x1¢x2> —
X1, X2

((athA b2—4ac>0>V(a:0/\b:0/\c:0))
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Resol ve [3pa,x2) (@X1®+bxl+c =0Aax2?+bx2+c =0Ax1#x2), Real s]

(a=08&%b =08&&c =0) || (a+0&&-b*+4ac <0)

Invertibility of a square matrix

ab
LetA= ( c d ) be a 22 real matrix. Let us investigate whérisinvertible.

Using the definition of invertibility A is invertible if and only if there exists ah= (z \3;) such thaiX A= I;

reformulating this condition with the matrix ensjeve get:
3 (xa+yc=1Axb+yd=0Aua+vc=0Aub+vd=1)
X,y,u,v

As a solution of this quantifier elimination probieve get the quantifier free formula

ad-bc+0. (+)

Of course we could also have gotten a slightlyedéint solution formula, since a general algorithmay not

know, which is the 'nicest' among the possiblynitély many defining formula. But if the solutidormula is

¢1(a, b, ¢, d)andga(a, b, ¢, d) is another quantifier free defining formula, thtbe sentence bv ) p1=do is a
a,0,C,

true sentence of the theory. Additionally we natiteat QEPCAD gives in fact the form (+), whiMathematica
doesn't.

ad-bc+0

Resol ve [

Exists[{X, ¥, U, vV}, xa+yc==1Axb+yd=0Aua+vc=0Aub+vd-=1], Reals]
(a==08& &b +0&&%Cc +0) || (@a20& & -bc+adz0)

Solotareff approximation problem

This is a polynomial approximation problem, where approximate a real polynomial of degrewith polynomi-
als having degree (at most) (n-2) in the closedri [-1,1] using the uniform (supremum) norm. Treural
guestion which arises in this setup, whether theists a best approximation polynomial which sassthe
given conditions. It is maybe astonishing at theyvest glance, that the problem can be expresssdg the
languagé.,[ ordered rings] and thus it is tractable with thmntifier elimination metodology.

To show this, let us begin the following symboliaatof the problem:

Y(-lsxs=1)={P-Q} = |P-Q

¥

v
Q

where P is given polynomial to approximate, Q is i@st polynomial which satisfies the approxainmtondi-
tions andQ ranges over the set of all polynomials with dedre@). The supremum norm (||.||) is obviously not
part of the signature of the langualgg and we are not allowed to quantify in this firster language over
polynomials, but it is easy to see, that the caoomliA||<||BJ| is equivalent to the following:
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Y(—lsx$1):>§ (-1=y=IAfA[X]} ={Bly]lh

Furthermore, eliminating the absolute value (¢x| < | y| <= x? < y?) and introducing 8 - 1 fresh variables
[(n+ 1) bound and 2n — 1) free variables for representing the coefficierftsRy Q and Q resp.], we gain the
sought for formalization of the problem. Anothenple thought lead us to the conclusion that foiteaty n, it is
sufficient to approximate the following one paraengpolynomial familiy of the formx" + r x™1 (r = 0) (dear
reader, please convience yourself).

So let us formulate the quantifier elimiation peil which belongs to the Solotareff approximatioobtem for
n=2:

Tim'ng[
Resolve[r zO/\v(x,a” (-1sxsl=>:-|y (-1sysl/\(x2+rx—a)25 (y2+ry-a1)2)),

{a}, Reals]]
1
{19.2172, (Osr sZ&&a::g (4+4r rz)J [] (r >2&&a == )}

1 r<-2

1/2-1/2r-r2/8 -2<r1r <0
Sol 22([r_]: =

1/2+1/2r-r2/8 0sr <2

1 r>2

Pl ot [Sol 22[r], {r, -4, 4}, PlotRange » {0, 1},
AxesOrigin - {0, 0}, AxesLabel - {r, a}]

a
1.0

0.8

0.4

0.2

| L L L | L L L L L L | L L L | r
-4 -2 0 2 4

The solution Q[r] is a continuous, piecewise polyial function
Figure 1

Let us try to prove (verify) with elementary todte result given by the algorithm.
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Caselr=2

In this case P[x]=x"2+rXx is monoton increasing (its derivative Bx+r and for all x[-1,1]
2%x+r1)=-2+r1 =0, thusP has a minimum in -1, a maximum in +1.

Consegently the solution feris the arithmetic mean of the function valueshia keft and the right endpoints of

the intervaI,P[_l];P[l] = (1_”;(1”) =1.

Case2: Gxr=<?2

The maximum will be in +1 , but the the minimumt in -1, since :
P'[X]=0e=x=(-r/2)(e[-1, 1)) and a derivative changes sign at this point. Vlee at—r/2 is —r?/4.

2
Thus in that case the aritmetic mean of the functmlues in 1 and in-r/2 is —; +—; + —;

If we now increase the number of variables, whigrevinvolved in the second degree problem with r (o
bound and one free), then we can investigate tpeoajmation of cubic polynomials by the quantifieimina-
tion method similarly. At the end of this sectiom weat only the special case from this probelnss;lavhen
r =0, that is, when we approxima@gx] = x% with the linear polynomial familQ [x] = ag x + b. (Solution: a=3/4
and b=0, thus the sought for polynomiaQi$x] = —i X)

In the next computation, we do not eliminate alanifiers in one stroke, because the effectivetaflity of a
QE-problem heavily depends on the order of theatdes. First we eliminate the variablgsa; andb;and in a
second round we eliminate

Ti ni ng[expr = Resol ve|
(a1, b1} (—1sx <1=3, (—lsy sl&&(x3—ax—b)25 (y3—a1y—bl)2)), Reals]]

1
[30.2039, x < -1 (15Xsl&&— (-1-4ax+4x®) sb<— (1-d4ax+4x°)|||x>1}

4

QY

Ti m ng[Resol ve [V, expr, Real s]]

0.280017, a == E &&b ==
4

Show[Graphi csArray [{Pl ot [{x"3, 3/4Xx}, {X, -1, 1}, PlotRange » {-1, 1},
Di spl ayFunction » I dentity, AxesLabel -» {"x", "P,Q"}1,
Pl ot [Abs[x"3-3/4x], {X, -1, 1}, DisplayFunction - ldentity,
AxesLabel -> {"x", "|E|"}]1}], | mageSi ze » {600, 300}]
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P.Q El
1.0f 0.25¢
0.20r
0.5
0.15-
. . . Loy
-1.0 0 0.5 10 10}
-0.5F 0.05¢
. . . I
-1.0- -1.0 -0.5 0.5 1.0

a) The original cubic polynomidP and the best linear approximatiQn b) The graph of the error functign
Elx]|= | P[x] - QIX]|.
Figure 2

PROOF (Reasoning using elementary calculus)
It is easy to see that the optimal polynomial ha=® constant term. Therefore it is sufficienttmsider the
functionsQ,[x] = ax.

Let E, denote the functioR[x] — Q,[x]. Since for all nonnegative we have B a| = |Ea|, we can assume that
a is nonnegative. Furthermore, because of the deymametry, it is sufficent to investigate the erfanction on
[0,1]. We prove once more by case distinction.

case 1: ifa= 3 then E4[x] is monoton decreasing in [0,1], sinEg'[X] = 3x? —a and thus for all ®[0,1] and
for allae(3,0): E5'[X] <3-a<0
So the error equals tpE[1] |, which isa — 1; this is the smallest in case lai 3. Then the error is 2.

case 2: if &k a< 3, thenE has a local minimum on [0,1] &/3)"1/2, so the function to minimize ia has the
form Maxfl[a], f2[a]] = Max[ |1-aj, (2/3\/§a’\(3/2))], which has a global minimum at= 3/4, and here

»lw

the error is only 1/4, so the final solution@x] = = x.

P=x3-ax;
fl1=P/. Solve[D[P, x] =0, x]1[[2]]

2 a3/2

_3\/3_

Pl ot [Max[Abs[1-a], -f1l], {a, 0, 3}, Ticks » {{3/4}, Automatic}]



R. Vajda

2.CF

1.C

»low -

The investigated function has a global minimura atg.

Figure 3

We leave to the reader to investigate the parandeteainr > 0 in detail with the quantifier elimination or with
other methods.

— — — True

(y3+r yzalybl)z]

Finally we add as an interesting fact that duehtodescription given by E. Kaltofen [7], the Sotefé problem
can be handled (with further mathematical backgudat full scope with quantifier elimination until< 6, while
D. Lazard reported in 2005, that combining the dgiian elimination with other techniques the prables
solved, ifn < 10.

The description of the algorithm working on the
background and its properties

The basic idea of the Collins' real quantifier étiation algorithm is as follows: Without loss ofrgzality we
can assume that the arbitrarily quantified inpuirfala¢ is in prenex normal form and the right hand siofethe
equailities and inequalities occuring in the quiatifree matrix of¢ are reduced to 0. We extract all the multi-
variate polynomials from the formula andrifis the number of variables, then we decompose-8mace into
disjunct connected subsets such that each extractgdomial has a constant sign (positive, zermegative)
over each subset. This decomposition permits aetade the truth conditions of the quantified infarmula by
using finitely many sample points (we pick a sanfpden each component of the decomposition). Theréhlgm
is referred as Cylindrical Algebraic Decompositi@n with the abbreviation CAD) in the literaturehd algo-
rithm consists of three main phases: projectiosebaase (real root isolation and the decomposifahe real
line) and lifting. The algorithm is recursive: inder to get the desired decompositiorRdf we need to construct
decompositions aR?, R?, ..., R"one after the other. We will see that exact syntbotimputation is essential.
The algorithm is doubly exponential in the numbgvariablesr; fixing r, it is polynomial in the number of the
involved polynomials and in the maximum degreehefinvolved polynoimals.
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Basic notions

DEFINITION 1

We call a nonempty connected subseRtd region. A decompositioD of X cR'is finite disjunct collection of
regions such that the union of the disjunct regisng (D ={D; ..., D,}; UD; = X). We call an element of the

decomposition a cell. The sample point of a calkigrbitrary element.

DEFINITION 2

Let A be a finite set of polynomials (with integral cii@&nts). We say that that a decompositioigvariant,
if all ae A has constant sign over each cell.

DEFINITION 3
Definition 3. A cylinder over a regioR is Z(R) = RxR.

Stack construction with continuous functions in Zhend 3-space.
Figure 4
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DEFINITION 4

Let f,, ..., fx be real continuous functions defined on the regtoithe decomposition of(®) determined by
the functionsf; <... < f¢ consists of fi_;, fi)-sectors and fi-segments. Such a decompositon is also called a
stack determined by th& s over the region Rcf. Figure 4).

DEFINITION 5

We say that the decompositiBnof R" is cylindrical, if either =1 and D ={Dq, ..., Dy,,1}, where Dy; = {«} ,
aeR,m<...<a, esDyj,1 = (i, @it1);
oo r>1 and there is a cylindrical decompositioD'= {Dl, ooy Dy } of R™ such that

D ={D11, ...D1,241: - Dpuy ooy Dy 2v,41} , furthermore the decompositid®; 1 ..., Dj 2y+1) is a stack over
Djforall 1<i<pu.

DEFINITION 6

A decomposition of Ris algebraic, if the connected sets in the decomposition are so called semialgebraic sets,
that is, roughly speaking the functiofiswhich determine the decompositon, are algebrait3p,

DEFINITION 7

A decomposition of [Rs a cylindrical algebraic decomposition, if it is cylindrical and algebraic.

Example 1: a univariate problem

Decide whether the following sentence ¢ of the theory is true or false.

.=V (X21)= (Xx"2+3 X >2)
X
A={x-1,x*+3x-2}

roots: ¢ = ——; (\/ 17 + 3), ap = ——; (—\/ 17 + 3), a3z =1; 7cells: 4 1-cells, 3 0-cells (red).
(No projection and lifting, only base case)

D ={Dy, D2, D3, D4, Ds, Dg, D7} = {(=c0, @1), {a1}, (@1, @2), {@2}, (a2, @3), {a3}, (@3, )}

Sample points (red and blue points).

spoi nts ={-4, -% («/F+3), 0, -% («/1_-3), 9/10, 1, 2};

Solve[x"2+3x -2 =0, x]

ey [T} e (387 )

N[%]
({x > -3.56155}, {x > 0.561553}}
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-—0 ® 00 o
3 -3- ) 7 -3+ I7)

Map[(((x-1) <OV X?+3x-2>0) /. x ->#) & spoints]

{True, True, True, True, True, True, True}

Consequently, since the matrix evaluates overedl$ ¢to true; the quantifier free, goequivalent formula is True
(i.e.y is 0=0).

Resolve[vy (x 21) = (x*"2+3x > 2), Real s]

True

Example 2: a bivariate problem

¢:=3 (X "2+y"2<1AY >X)
y

A={-y>-x2+1,y-x

Phase I. In case of bivariate polynomials it idisight to include into the first projection set the resultants of
each different polynomial pair and the resultanéath polynomial fronA and its derivative (with respect to the

main variabley) .

Res[-y* -2 +1,-2y|=4(1-%)
Res[-y*-x®+1,y-x|=1-2x%
Pr={1-x% 1-2x%

In the general case the projection factorReis more complicated: we have to determine thecjpal subresul-

tant coefficients of the polynomial pairs from tfeeglucta set of\, but even then we obtain a finite set(iof 1)-
variate polynomials.

A={-y"2-x"2+1, y-X};
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Resultant [-y"2-x"2+1, -2y, y]
4 (1-x?)

Resul tant [y -x, -y*"2-x72+1, y]

1-2x2

Phase Il. The real root isolation of the polyndmia P; delivers the decomposition of the real IR& there are
9 cells alltogether. As sample point we choosetiamal number from the 1-cells and in case of theells we
choose the point itself. We could notice, thatrihats of the univariate polynomials By detect the 'singularities’
(common points, self-crossings, tangential poiotsps, isolated points etc.)of the algebraic cudetermined
by the original bivariate polynomials i

=1

1 1
a1=—1,az=—\/—?,03 \/—?,04

D'={Dy, D, D3, D4, Ds, Dg, D7, Dg, Do} =
{(=00, a1), {a1}, (@1, @2), {@2}, (@2, @3), {a3}, (a3, @4), {@4}, (@4, c0)}

spointsl = {-2, -1, -4/5, -1/Sgrt[2], O, 1/Sqrt [2], 4/5, 1, 2};

y
2l

/1-

2t

Stack construction
Figure 5

Phase lll. Stack construction over one dimensiaedls, lifting of the decomposition &: We substitute back
each sample point to the original bivariate polyr@sin A. Doing this we get & univariate polynomials.
Carrying over the root isolation of the pairs ofypomials, we get decompositions of the cylindezfirced by the
0— and 1—cells. For instance, if we take the tpimd {9/25— y2, 4/5 + y}, there exists three real roots, thus we

get 7 cells; once more we take samples from thergéed 2 dimensional cells.
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f3'1= X= f312 = —‘\/ 1-x% < f3'3= \Y 1-x2 (0V€I’D3)

D3 ={D31, D32 D33 D34 Das Dze D37} ={(-0, fa1), {fa}. (fa1 fa2). {fa2) (fa2 faa). {faz} (fa3 o)}

Map[ (A /. X » #) & spointsl]

[{-3-v% 24y} {-¥2 l+y},{£%—y? g .t {% -y?, V;r+y},{ly2, v},
1 1 9 4
{5 —v3_+y},{ag—y? oy h [y teyh {m3oyR -2y

Sort [Flatten[y /. Map[Sol ve[# ==0] & %[[311]11]

4 3 3
U 5 5

spoi nts2 =

{

{{-2, -3}, {-2, -2}, {-2, 0}},

{{-1, -2}, {-1, -1}, {-1, -1/2}, {-1, 0}, {-1, 1}},
{{-4/5, -1}, {-4/5, -4/5}, {-4/5, -7/10},

{-4/5, -3/5}, {-4/5, 0}, {-4/5, 3/5}, {-4/5, 1}},

({-1/ V2. 1), [/ VE. -1/ 47}, {1/ o)

(-1/VZ. 1/Z), (-/VE 1]}

{{0, -23, {0, -1}, (O, -1/2}, {O, O}, {O, 1/2}, (O, 13}, (O, 2}3,
((1/ V7 1) {1/ vE. -1/ V7

(1/ V7. o). {1/ T, 1/ T} {1/ VF 1))

{{4/5, -1}, {4/5, -3/5}, {4/5, 0}, {4/5, 3/5},

{475, 7710}, {4/5, 4/5}, {4/5, 1}},

{{lv _1}! {lv 0}! {lv 1/2}1 {lv 1}! {lv 2}}1
{{2, 0}, {2, 2}, {2, 3}}

}

trv =
Map[Map[ ((L -x"2-y~r220AY-x>0) /. {X->#[[1]]1, V>#[[2]]}) & #] & spoints2]

{{Fal se, Fal se, Fal se}, {Fal se, Fal se, Fal se, True, Fal se},
{Fal se, Fal se, Fal se, True, True, True, Fal se}, {Fal se, Fal se, True, True, Fal se},
(Fal se, Fal se, Fal se, Fal se, True, True, Fal se},
{Fal se, Fal se, Fal se, Fal se, Fal se},
{Fal se, Fal se, Fal se, Fal se, Fal se, Fal se, Fal se},
{Fal se, Fal se, Fal se, Fal se, Fal se}, {Fal se, Fal se, Fal se}}

We extract the labels of the 'good' cells involvedhe decomposition dR and construct the final defining
formula.



14

R. Vajda

Uni on[Fl att en[Mapl ndexed [Cases [#1, True -» #2] & %]11]
{2, 3, 4, 5}

Simplify[(x=-1) V(-1 <x<-1/Sqgrt [2])V
(Xx=-1/8Sqrt [2]) V (-1/Sqrt [2] <x<1/Sqrt[2])]

1
V2

-1l <Xx<

Resolve[3y (x"2+y”2<1Ay >x), Reals]
1

V2

-1l <Xx<

REMARK 2

In this examples in fact we gave the quantifieefisolution formulas in an extended language, but it can be
shown, that the solution formula can be also definging the signs of the irreducible factors of prodynomials

in the augmented projection set; the combinatiothe§e sign-conditions is compatible with the sigraof the
original language, e.g.

Y (1-2x¥>0)V(1-2x=0Ax<0)V(x+1=0V(1-2x*<0AX<0AX+1>0)

y

Cylindrical algebraic decomposition Bf; Those sample points and the cells of sample pairg plotted in

red, which satisfy the polynomial constra (x2+y2 <1 Ay > x) in the matrix of the prenex formula.
At total nine different stacks could be seen ingfoture.

Figure 6
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5. Conclusion

In this survey we considered some mathematicali@gtmns of the quantifier elimination method otlee theory

of real closed fields. We briefly described theecof the Collins algorithm, which solves the quéetielimina-
tion problem by giving a sign invariant decompasitiof ther-space. We did not touch those mathematical
applications which would require more sophisticatedkground, nor the industrial applications like piano-
movers problem in robotics. We demonstrated throexgmples the main steps of the algorithms and gave
complexity. In the recent years several importamprovements have been made to the original metbodi-
ously, the method could not only be used by itdmit, rather as a component of a general purposkemaitical
assistant system. For instance, B. Buchberger's /€8od [3, 10] successfully integrates the CADhuoétinto

an automated reasoning system which facilitatesghsoning in the field of elementary analysis.
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Appendix. Dynamic Demonstrations

Solotareff Demo (n=2)

Description: Change the value of the paramd®oy the slider. In each round you will see the gatid polyno-
mal (red), the best approximating constant polymbriblue) and to the right a new plot with the dray the
optimal solutions. Moreover, the input formula bétquantifier elimination problem associated to Stwdotareff
problem is printed, too.

In[5]:=

Mani pul at e [Col um [{Row[{StyI e["2011-Sol ot ar ef f 2D-Denp", Bl ue, Font Si ze » 16]1}],
1 r<-2
1/2-1/2r-r2/8 -2xr1r <0

Row[{PIot [{
1/2+1/2r -r2/8 0sr <2
1 r>2

/.1 >R x2+Rx}, {x, -1, 13,

Pl ot Range » {{-1, 1}, {-3/2, 7/2}}, | mageSi ze - {230, 230}],
1 r <-2
1/2-1/2r-r2/8 -2xr1r <0
1/2+1/2r-r2/8 0sr <2
1 r>2

Pl ot[ . {r, -3, 3},

Pl ot Range » {{-3, 3}, {-.1, 1.1}}, |nageSi ze » {230, 230}, EpiIog-»{Red,
1 r<-2
1/2-1/2r-r2/8 -2xr1r <0 .

/.1 > ,
1/2+1/2r-r2/8 O<r <2 }]}]}]
1 r>2

Poi nt Si ze[. 02], Poi nt [{R

I nput Fi eld[v(x,al) (—1sx <1l=3y (—lsy sl/\ (x2+Rx—a)2 < (y2+Ry—a1)2))’
Enabl ed - Fal se]}],

({R -1/2}, -5/2, 5/2, 1/10}]
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2011-Sol ot ar ef f 2D-Deno

3l 1.0
0.8+
2 |-
out[5]= 1r
0.4r
-1.0 -0.5 0.5 1.0 0.2p
-1r | , R , , )
-3 -2 -1 1 2 3

Vixay (-lex=1=3 (-1sy=<18&

(-a-7 +x2)2 < (7a1712’ +y2)2))

1D CAD Demo

Description: Type a well-formed existential sentence with onarfabvariable to the inputfield. Be the formula

matrix a conjunction of polynomial relations. Usdyothe "==, >, <" relations.
The demo generates a sign-invariant-decomposifidineoreal line, i. e., a samplepointlist with grsimatrix (-1,
0, +1).

If the existential sequence is valid, you will ssene red columns of the sign-matrix.
Whenever you modify the formulamatrix, click to thatton to get the new sign-matrix.
e CADl[y_] : = Modul e[{RSi gnList, ty, plist, zerolist, sanplelist}, trrules =
{Geater[p_, q_]1»p-q>0, Equal [p_, q_1 »p-q=0, Less[p_, q_]1 -»q-p>0};
ty =y /. trrules;
RSi gnLi st = Map[If [ (Head[#] === Greater), 1, 0] &
If[Head[ty[[2]]] === And, List eety[[2]], {ty[[2]1}]];
plist =Cases[ty, (Equal [p_, 0] | G eater [p_, 0]) »p, Infinity];
zerolist = Union[Sort [Del et eCases [Joi n @@
Map[x /. Sol ve[#] & Thread[Equal [plist, 0]1]1], Conplex[_, _11, Less]];
samplelist =1f[zerolist = {}, {0}, Sort [Join[Sort [Join[
Tabl e[ (zerolist [[k]] +zerolist[[k+1]]) /2, {k, Length[zerolist]-1}],
zerolist], Less], {zerolist[[1]] -1, Last [zerolist] +1}], Less]];
Tabl eFor m[Prepend [Tr anspose [Tr anspose [Tabl e[
Prepend[Tabl e[plist [[j 1] /. Xx »sanplelist[[k]] //Sinplify // Sign,
{k, Length[sanplelist]}], plist[[j1]], {j, Length[plist]}]1] /.
RSi gnLi st - Map[Styl e[#, Red] & RSignList]], Join[{"xo"}, sanplelist]]]]

Panel [Dynam cModul e[ {form=Exi sts[x, X >0AXx"2 <41},
Col utm [ {Text [Styl e["2011-1D Deconposition", Blue, FontSize - 16]], InputField[
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Dynam c[form]], Button["Generate Deconposition"], Dynam c[CADL[form]]}11]

2011-1D Decomposition

3, (x>0 &&x? < 4)

Generate Decomposition

Xo 3 2 -1 o0 1 2 3






