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Some specific methods with applications in biology, ecology and related natural 
sciences will be presented. The stress will be on less known methods with a 
wide potential in applications. In the first part, correspondences between two 
sets will be considered as a tool for investigating various connections among 
their elements. One of the sets is called the set of objects and another is the set 
of attributes and the correspondence shows which object posseses which 
attribute. In this context, an algebraic discipline called formal concept analysis 
will be presented. Furthermore, binary relations illustrating internal connections 
within one set will be elaborated.  Equivalence relations and ordering relations 
have a special role in applications. Equivalence relations correspond to 
partitions of the set into disjoint classes. Classification of organisms is based on 
partitions of sets and equivalence relations and every taxon represents an 
equivalence class. Ordering relations often appear in applications as natural 
orderings on a set of objects. Two elements can be comparable or uncomparable 
under an ordering. Finally, some new methods connected to fuzzy sets and 
fuzzy relations will be presented. These concepts allow possibility to erase 
strong borders between sets, and instead of strong belongingness of elements to 
sets, grades of belongingness are introduced.  In this context fuzzy cluster 
analysis are explained and software packages in which this method is 
implemented are listed.   

1. Correspondences and relations 
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Let  A  and B  be non-empty sets. A correspondence R  of sets A  and B  is a subset 
of a direct product of these sets, i.e., R A B⊆ × . If for elements  and  we have that 

, then  a  and b  are in the correspondence and we can write it also by . 
Therefore, a correspondence is a connection of some elements in set 

a A∈ b∈B
( )a b R, ∈ aRb

A  with some elements in 
B  and we define it by set of ordered couples of elements which are connected in this context. 

 

Example 1. Let  be a set of four species of 
fungi of genus Amanita, where by 

{ ,A p r q s= , , }
p  we denote Amanita 

phaloides, by  Amanita rubescens, by q  Amanita 
pantherina and by  Amanita citrina. Let 

r
s { }B a b= , c,  be a 

set of some characteristics that may posses fungi of genus  
Amanita. Namely, with  we denote the characteristic "stem 
has a ring", with  - "a mushroom has a cap with striate 
margin” and  - "there is remaining of the veil on the cap". 
Let the correspondence  

a
b

c
R  be defined as follows:   

Species x  is in the correspondence R  with the characteristic 
, if mushroom y x  has a characteristic .  y

Then, we can obtain R  as a subset of the set   in the 
following way:  

A B×

{( ) ( ) ( ) ( ) ( ) ( ), ( , ), ( , )}R p a r a r c q a q b q c s a s c= , , , , , , , , , , , .  

Each of the ordered couples from the set R  means that a 
species of mushrooms has a specific characteristic. In 
example:  means that the species Amanita 
pantherina has a cap with striate margin. Since , 
this means that Amanita rubescens does not posses this 
characteristics.  

( )q b R, ∈
( )r b R, ∈/

 

 
A binary relation (relation) is a correspondence on a single set  only. Therefore, the 

relation 
A

ρ  on a set  is a subset of the set   (denoted also by ). The relation is a 
connection between some elements of a set . If elements  and b   from  (the ordering of 
elements is here important) are in a relation 

A A A× 2A
A a A

ρ , we denote this by ( )a b ρ, ∈  or as a bρ .  

In the sequel, we start from a correspondence on sets  and A B , and use it to define 
two particular relations on sets A  and B .  

Let R  be a correspondence from a set A  to a set B  ( R A B⊆ × ). Let ρ  be a relation 
defined on  using the correspondence A R  in the following way:  

( ) if and only if { | ( ) } { | ( ) }x y z B x z R z B y z Rρ, ∈ ∈ , ∈ = ∈ , ∈ .  

In other words, elements x  and y  are in the relation ρ  if they are in the 
correspondence  R  with same elements from B .  

BSimilarly, we can define a relation  on θ :  

( ) if and only if { | ( ) } { | ( ) }x y z A z x R z A zθ, ∈ ∈ , ∈ = ∈ , ∈y R .  
 

Example 2. Let  be a set of 
following fungi growing on wood:  - Agrocybe aegerita,  - 
Pleurotus ostreatus,  - Polyporus sulphureus,  - Fistulina 

1 2 3 4 5 6 7 8 9 10{ }A a a a a a a a a a a= , , , , , , , , ,

1a

3a 4a
2a
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hepatica,  - Auricularia auricula-judae, -Polyporus 
squamosus, -Meripilus giganteus, -Flammulina velutipes, 

- Panus tigrinus, -Pholiota destruens.  

5a
a

1 2

6a

7 8a

}
9a 10a

4 5Let 3 6 7{B b b

b

b

b,

3

7

b b,

5b

b b= , , , ,

2b

 be a set of some characteristics 
that can be used for mushroom identification:  - "mushroom 
has gills underneath", - "mushroom has pores or tubes 
underneath", - "mushroom has a red cap", - "mushroom 
has a yellow cap", - "mushroom with decurrent gills",  - 
"mushroom with cup having free gills or with adnexed to shortly 
adnate gills", -"fungi has a tough, gelatinous, elastic texture".  

1b

4b

6b

Let  R  be a correspondence defined as in Example 1:  

( )  if the species s a chara isticif and only ha cterx y R x y, ∈ .  

The correspondence R  is given in the following table, where 
elements of the set  are in the table heading left and elements 
of the set 

A
B  are in the table heading up,  and if ( )x y R∈,  then 

in the place of intersection of the x  row and y  column a small 
circle is placed.  

R  1b 2b 3b 4b b 6b 7b5

1a  o      o   

2a o o        

3a o o        

4a o o        

5a        o  

6a o        

7a o        

8a o o o        

9a o o        

10a o o        

Table 1  

Now, we can consider the relation ρ  on A   obtained from the 
correspondence  R  as follows: two fungi species are in the 
relation ρ  if they have same characteristics. Obviously, we 
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have that every fungi is in relation with itself, moreover we have 
that 1 10 10 and a a a a1ρ ρ , 2 9 9 2 and a a a aρ ρ , 6 7 7 and a a a a6ρ ρ . 
Since we have that there are mushrooms which are in 
correspondence with other different mushrooms, this shows that 
using the characteristics from the set B  only we can not 
guarantee the correct identification of mushrooms. In order to 
be sure that we are able to identify all mushrooms from the set 
A , we have to enlarge set B , i.e., we have to take into account 
some other characteristics and then to consider the 
correspondence from the set  to this larger set. A
Further, we can consider also a relation   on the set θ B  
determined by the correspondence R . Two characteristics are 
in a relation  if sets of mushrooms having these properties 
coincide. In this example each characteristic is in relation  
only to itself. This means that there are no  characteristics that 
are possessed by the same species of mushrooms.  If this 
would happen (that two or more characteristics are possessed 
by the same species of mushrooms) this would mean that not 
all of the properties from the set 

θ
θ

B  are necessary for the 
identification of mushrooms from the set , i.e., we would be 
able to determine the mushrooms using the smaller number of 
characteristics.    

A

Now, in order to be able to identify all mushrooms from  , we 
have to add some more characteristics into the set 

A
B . Now we 

taker a new set 1 8 9 10{ }B B b b b, , ,

1

= ∪

8b

10b

 where new characteristics 
are as follows:  is the characteristic "cap, and especially its 
margin is covered with whitish irregular scales”,  - "cap is 
eccentric and asymmetric and stem is short and eccentrically 
attached to cap" and  - "flesh changes color when broken or 
bruised ".  

9b

The related correspondence R  on sets  and A 1B  is given in 
the following table:  
 

1R  1b 2b 3b 4b 5b 6b 7b 8b 9b 10b  

1a o o           

2a o o o           

3a o o           

4a o o           

5a        o     

6a o           
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7a o o           

8a o o o           

9a o o           

10a o o o           

Table 2  

Now, there are no different species of mushrooms with 
the identical properties from the set 1B . Therefore, it is possible 
to identify fungi from the set A  according to characteristics from 
the set 1B  only. 

 

2. Formal concept analysis 
 

Formal concept analysis is a technique that is used to identify similarities in data, starting from a 
correspondence. It is used in  data analysis, knowledge processing, in various disciplines. It is 
developed at TU Darmstadt, Germany by R. Wille and B. Ganter. After publishing several 
research papers in which the theory is developed, B. Ganter and R. Wille in 1999 published a 
book Formal Concept Analysis - Mathematical Foundations, Springer, 1999. This book contains 
the detailed explanation of this theory and its applications. 

A formal context  consists of two sets  and ( , , )K G M I= G M and a relation (correspondence) 
I  between  and G M . The elements of  are called objects and the elements of G M attributes 
of the context. For a set of objects, we define: A G⊆

 
 ' { | ( , )  for all }A m M g m I g A= ∈ ∈ ∈

(the set of attributes common to the objects in A ), and for a set B M⊆  of attributes we define  

' { | ( , )  for all }B g G g m I m B= ∈ ∈ ∈  

(the set of objects common to all the attributes in .B ) 

A formal concept of the context  is a pair ( ,( , , )K G M I= )A B , where , A G⊆ B M⊆ , 
satisfying '  and ' .A B B= = A  

A  is then called the extent and B  the intent of the concept . ( , )A B

Further,  the set of all concepts of a formal context is considered and it is denoted 
by  

( , , )K G M I=
( , , )B G M I . 

A natural order can be introduced in the set of all concepts, as follows: 

If ( , )A B  and  are two concepts of the same context, then ( , )C D ( , )A B  is a subconcept of 
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( , )C D  if  or  A C⊆

C D

.D B⊆

Then, also ( ,  is a superconcept of ) ( , )A B , and we write ( , ) ( , )A B C D≤ . The relation  ≤ is 
called the hierarchical order of the concepts. 

( , , )B G M I  can be drown as a diagram and posses a special structure (such diagram is called 
a lattice and it is out of scope of this article).  

Example 3.  Let the set of objects  consist of following 
mushrooms: 

G

{ }Boletus edulis, Agaricus xanthoderm  Morchella esculenta= a,G . 
Further, let set of attributes be as follows: 

 { }saprophy= te, edible, basidiomycetaM . 

I  is the correspondence "mushroom species x  has  
property y ".  

The correspondence I  is presented in the Table 3. 

Table 3. 
        
Now we look at some formal concepts of the context 

.  Since ( , ,K G M )I=
{ } { }Bo is ' edible, basidiomyceta=letus edul  and 
 
{ } { }edi yceta ' Boletus edulis=ble, basidiom , we have that 

{ } { }( )B is , edible, basidiomycetaoletus edul  is one concept. 
Also, since  
{ } { }Bo is, Agaricus xanthoderma ' basidiomyceta=letus edul  and 

{ } { }ba eta ' Boletus edulis, Agaricus xanthoderma=sidiomyc ,  

{ } { }( )B dulis, Agaricus xanthoderma , basidiomycetaoletus e  is 
another concept and so on. 
There are 8 different concepts.  
 

XX
Morchella 
esculenta

XX
Agaricus 
xanthoderma

XX
Boletus
edulis

basidiomycetaediblesaprophyte

XX
Morchella 
esculenta

XX
Agaricus 
xanthoderma

XX
Boletus
edulis

basidiomycetaediblesaprophyte
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3. Equivalence and ordering relations 

3.1 Equivalence relations  
 

Let ρ  be a relation on a set . We define special properties of relations which are 
important in applications.    

A

The relation ρ  is reflexive relation on A  if every element from A  is in relation with 
itself, i.e., if the following is satisfied:  

( )( )x A x x ρ∀ ∈ , ∈ .  

The relation ρ  is symmetric on  if from " A x  is in relation with y " it always follows 
that y  is in relation with x , i.e.,   

( )( ) ( ) ( )x y A x y y xρ ρ∀ , ∈ , ∈ ⇒ , ∈ .  

The relation ρ  is transitive on  if from the facts that  A x  is in relation with y   and y  is 
in relation with , it follows that z x  is in relation with , i.e.,   z

( )(( ) ( ) ( )x y z A x y y z x z )ρ ρ ρ∀ , , ∈ , ∈ ∧ , ∈ ⇒ , ∈ .  

The relation ρ  is anti-symmetric if  ( )x y,  and (  are not together in )y x, ρ  unless 
x y= , i.e.,   

( )(( ) ( ) )x y A x y y x x yρ ρ∀ , ∈ , ∈ ∧ , ∈ ⇒ = .  

There are relations which are symmetric and antisymmetric at the same time: one 
example is ordinary equality relation.  

There are two special types of relations well known according to good applicability in 
various fields: equivalence relations and ordering relations. 

A relation ρ  on a set  is an equivalence relation (equivalence)  on this set if it is 
reflexive, symmetric and transitive.  

A

Common examples of equivalence relations we can find in taxonomy. Wherever we 
divide a set into some classes, there is a connected equivalence relation, as in the following 
examples.  

Example 4. Let  be a set of some animals on a habitat and  A
ρ  a relation "to be the same species with". This relation is an 
equivalence relation. 

 

Example 5. Let B  be a set of all species of mushrooms that 
were found in a wood and   the relation "to be the same 
genus with”. This is also an equivalence relation. 

θ

 

Let  be a set, A ρ  an equivalence relation on  and A x A∈ . The equivalence class xC  
determined by an element x  is the set of all elements from  that are in the relation A ρ  with x , 
i.e.,  

{ |xC y A y}xρ= ∈ .  

For every element from the set A  there is an equivalence class determined by this 
element. Every element belongs to the equivalence class determined by it, that follows by the 



8  A. Tepavčević 

reflexivity and the definition of the class. Therefore, every element from   belongs to some of 
these equivalence classes. On the other hand, every equivalence class contains elements from 
the set 

A

A  only. Hence, we can conclude that the union of all equivalence classes is equal to the 
set . Some of these classes can be equal. To be more precise, two classes are either equal 
or disjoint (which means that their intersection is the empty set).  Since the set  is a union of 
sets (the equivalence classes) which are mutually disjoint,  these sets make a partition of the 
set .  

A

A

A

Let  be a set and A ρ  an equivalence relation on it. The set of all equivalence classes 
of the relation  ρ , { |  is called   a quotient set and it is denoted by }AxC x∈ A ρ/ .  

In the example 4, one quotient set (according to the definition) form all animals that are 
of the same species with some observed animal. These are all animals of the same species.  
Hence, each equivalence class is formed by all the animals of the same species.  The quotient 
set is set of all animal species on this habitat.  

In example 5, one equivalence class is formed by all the species belonging to the same 
genus and the quotient set is set of all mushroom genera found in this wood. 

Every classification of objects to some classes is based on equivalence relations.  
Cluster analysis or clustering, which is an assignment of a set of observations into subsets 
(called clusters) so that observations in the same cluster are similar in some sense  (and 
different from observations from different clusters) is based on equivalence relations. 

3.2 Ordering relations  
 

A relation ρ  on a set  is an ordering relation (order) if it is reflexive, anti-symmetric 
and transitive. Usual relations ,  on the set of real numbers 

A
≤ ≥ R  and ≤ ,  and |  (divisibility 

relation) on the set of natural numbers  are ordering relations. The inclusion of a collection of 
all subsets of a set is also an ordering relation. Relations <  and  on sets 

≥
N

> R  and  are anti-
symmetric and transitive, but not reflexive. Moreover, no element is in relation with itself. This 
last property is called irreflexivity. A relation which is irreflexive, antisymmetric and transitive is 
called strong ordering relation.   

N

 

Example 6. Let  be a set of people making a wider family 
and 

A
ρ  is the relation "to be descendant of”. The relation ρ  is 

strong ordering relation on the set A, because it is irreflexive, 
anti-symmetric and transitive.  

 

Ordering and strong ordering relations can be presented graphically, by a special type of 
diagram. In the diagram, elements of the sets are presented by small circles and the relation by 
a line connecting these circles. Two elements x  and y  are connected by a line if and only if 
they are in a direct connection (i.e., if x  and y  are in this relation, and there is no   different 
from  

z
x  and y  such that  x  is in the relation with , and  is in the relation with z z y .  If x  is in 

the relation with y , then we represent this in a diagram by an arrow from x  to y . In 
mathematics there is an agreement that the arrow is dropped and that x  is on the line below y  
in the diagram.  

 
 

Example 7. At a family meeting there are 14 people: three 
brothers , A B  and C ; their wives  ,  andG   
respectively, their mother 

E F
X  and father Y , and also mother 

of the mother Z .  There are also children:  and  are P Q
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children of A  and ; E R  and  are children of S B  and , 
and  is a child of C  and G . A diagram of strong ordering 
relation “to be descendant of” on this set of people is given in 
Figure 1.  

F
T

From the diagram we can deduce the relation as follows: x  is 
in the relation with  if and only if  y x  is below  in the 
diagram and there is a sequence of lines in the same 
direction connecting them. In this way, from the diagram in 
Figure 1 we can read that T  is a descendant of 

y

Z , and that 
 is not a descendant of G Z  since they are not connected by 

a line, etc. 

 
 

Figure 1. 
 

 
Elements  a  and  are comparable according to an ordering or a strong ordering 

relation 
b

ρ  if either  ( )a b ρ, ∈  or ( )b a ρ, ∈ . If  a  and b  are not comparable, we say that they 
are incomparable.  

 
Now, we return back to the relations defined in Section 1. Let R  be a correspondence 

from a set A  to a set A  and B Bρ and  and   relations defined on θ , respectively, using  R  
as follows:  

( ) if a y } { | (x nd onl  if { | ( ) ) },y z B x z R Bz y z Rρ, ∈

nd onl

∈

)

,

{

∈ = ∈ ∈,

}

 and  

( ) if a y | ( )x  if { | ( }y z A ∈z x =R z Aθ, ∈ ∈ ∈ , ∈z .y R,  

ρThe relation  is an equivalence relation on  and the relation  is an equivalence 
relation on 

A θ
B .  The relation ρ   unifies elements which are similar taking into account the 

starting correspondence R . Now, we can consider equivalence classes of ρ  and the set of all 
equivalence classes (quotient set)  A ρ/ A ρ/. On we can define the following relation: 

A ρ/  and let  be a relation defined on Let  xC  andC be two equivalence classes from  ≤y

A ρ/  as follows:  if and onlx y y if C C x yρ≤ . We can prove that this relation is well defined, 

since if  x yρ , then every element from xC  is in relation with every element from .  After 
checking reflexivity, anti-symmetry and transitivity, we can conclude that ≤  is an ordering 
relation on the set of all equivalence classes 

yC

A ρ/ . Analogue situation we have when we 
consider the relation  on θ B . Since this is also an equivalence relation, we can take the 
quotient set, and the ordering relation on this quotient set can be defined similarly.  

 Now, we return back to the set all concepts of a formal context ( , , )B G M I defined in 
Section 2. The relation “to be subconcept of” defined on B( , , )G M I as follows: 
if  and  are two concepts then ( ,  is a subconcept of ( ,  if  or ( , )A B ( ,C D) )A B )C D A C⊆
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D B⊆ is an ordering relation. 

4. Theory of fuzzy sets and fuzzy relations 
The set is one of the basic notions in mathematics. The set usually contains some 
elements.The main relationship between sets and elements is membership. In classical set 
theory,  an element either belongs to a set or it does not belong to the set. There is no other 
options. However, in  applications there are situations in which it is not so easy to single out all 
elements satisfying some property from a set, in case the property is not precisely defined. In 
example, if we would like to consider a set of all small bird species, it would  not be so simple.  
The hummingbird would obviously belong to the set of small birds, and also the wren, and 
maybe the canary, but what about a dove or a duck? For this set is difficult, or impossible that it 
is determined in a way that all people would accept this  choice of elements. Situations in which 
for an object it is difficult to make a proper classification are very common.  This type of 
problems can be overcome mathematically by introducing a new type of sets: fuzzy sets.  These 
are sets with un-clear borders in which a grade of belongingness or grade of membership of an 
element to a set is introduced. In this context,  grade of membership is a real number between 0 
and 1.  For an element that fully belongs to a set  the grade of membership is set to be 1 and if 
an element totally does not belong to a set, the grade of membership is set to be 0.  For 
elements that partially belong to the set (as e.g. a duck to a set of small bird species), the grade 
of membership would be a number between 0 and 1. An element that according to an 
estimation belongs more to the set then the other element, would have a higher grade of 
membership. For example, the grade of membership of a hummingbird and wren to a set of 
small birds might be 1, for a dove the grade of membership might be 0.4, for a duck it might be 
0.2.  Obviously, for a king vulture, the grade of membership to the set of small birds would be 0. 

 The formal definition of a fuzzy set (sometimes called a fuzzy subset) would be 
introduced in the sequel.   

A set X  we are starting with is called a universe.   A fuzzy subset  of a set  A X  is 
determined by a function : [0,1]XAμ → ,1], where [0 is the interval of real numbers. This 

function is called a membership function. For every x X∈ ( ), the value  A xμ  is called a 
grade of membership of an element x  to the set A . Hence, elements belong to a fuzzy set 
with higher or lower grade of membership. It is common to identify a fuzzy set with its 
membership function, and this notation will be also used here.  

Example 8. Let X  be a set of bird species 
{ }X A B C D E= , , , , , such that A  is a hoopoe, B  is a 

hummingbird,  is a duck,  is a swallow and C D E  is a wren. 
If we consider   "a set of small birds",   would hardly belong 
to that set (i.e. the corresponding membirship degree would 
be near 0) , 

A

B  would belong to that set (membership grade 
would be 1 and C ,  and  would belong to that fuzzy set 
with the membership grade between 0 and 1, taking into 
account that if bird is smaller its membership grade is higher.   

D E

One fuzzy set in this context  
is defined by following membership function: 

:
0.01 1 0.2 0.5 0.9

A B C D E
μ ⎛ ⎞

⎜ ⎟
⎝ ⎠

, 
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i.e.,  ( ) 0.5,Dμ =  etc. 

 Fuzzy sets have been introduced in 1965 by Lotfi Zadeh. Since then, they are applied in 
numerous fields. Fuzzy logic (a type of many valued logic based on fuzzy sets) is a  basic tool 
for fuzzy controllers, fuzzy expert systems, fuzzy databases, etc. Fuzzy controllers are based on 
fuzzy relations and fuzzy correspondences.  

 One of the most important notions in this framework is the notion of a cut-set of a fuzzy 
set. Let : [0,X 1]μ →  be a fuzzy set of a set  X  and let .  Then a [0,1]p∈ p -cut set is a 

classical subset of X  usually denoted by pμ  and defined by 

{ }| ( )p x X x pμ μ= ∈ ≥ . 

 Fuzzy correspondences (relations) are defined as mappings from direct products of sets 
to a [0,1] real interval. They are in fact fuzzy sets on a direct product of sets.  As for classical 
relations, we will mostly use binary fuzzy relations.  

     Let  and A B  be sets, and [0  a real interval. A mapping   is a fuzzy 
correspondence. In a natural way, to every  fuzzy correspondence there corresponds a matrix 
having elements from [0 , with rows indexed by elements from 

,1] : [R A B× → 0,1]

,1] A  and columns indexed by 
elements from B . 

R For a  and , a value A∈ b B∈ ( , )a b  is determined by the grade of relationship between 
elements  and  (which is the grade of membership of the ordered couple ( ,  to the 
correspondence 

a b )a b
R ).  

 If  is a fuzzy correspondence, then for every , a : [R A B× → 0,1] [0,1]p∈ p -cut 
correspondence is a classical correspondence pR  on  and A B   defined by: 

{ }( , ) | ( , )pR a b A B R a b p= ∈ × ≥ . 

Futher important notions are x -row fuzzy sets and -column fuzzy sets, defined as follows.  y

If  is a fuzzy correspondence, then a fuzzy set defined by : [R A B× → 0,1] 1]: [0,xR B →

( ) ( , )xR y R x y=  is an x -row fuzzy set of the correspondence R , and a fuzzy set  

defined by 

: [0,yR A→ 1]

( )y ( , )R x R x= y is an y -column fuzzy set.  

 

If A  and B  are finite sets, { }1,..., mA x x=  and { }1,..., nB y y= ,  we can present a fuzzy 

correspondence in a matrix:  
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1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) . . . ( , )
( , ) ( , ) . . . ( , )

. . . . . .

. . . . . .

. . . . . .
( , ) ( , ) . . . ( , )

n

n

m m m n

R x y R x y R x y
R x y R x y R x y

R

R x y R x y R x y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

 x  -row fuzzy sets are then presented in rows of this matrix and similarly y -column fuzzy 
sets are in columns of this matrix. 

 

 If we have a relation on a set , then we obtain a square matrix.  A

 

 There are many problems in artificial intelligence that are based on fuzzy relations and 
correspondences, like fuzzy control theory and fuzzy databases. In real applications we often 
have a situation when output values are determined in advance by input values, and the 
problem is to find a fuzzy relation which performs such a transition. A fuzzy controller is rule 
based and fuzzy IF-THEN rules appear in this context. Rules are implications of the following 
type: 

IF WASHING IS HEAVILY SOILED THEN ADD MORE DETERGENT 

(in the control system of wash machine) 

  In this approach, each rule is of the type:  

IF U  is B  THEN V  is . D

 

This can be translated into a form  

the pair ( , )B D  of  ( ,  takes the value in )U V R , 

where R  is a fuzzy relation. 

 

Consequently, if U  takes fuzzy input values from a set A , then we have that   is in 
relation , where . 

( , )U V
G G A R= ∩

 

Considering   and G R  as fuzzy relations on sets X  and  as a fuzzy set on the same 
universe, we obtain the following equality: 

A
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( , ) ( ) ( , )G x y A x R x y= ∧ . 

The Mamdani approach to fuzzy controllers starts from a fuzzy relation R  which is deduced 
from actual control process, and which from  input values creates output values using the 
following compositional rule of inference: 

( ) sup( ( ) ( , ))A R
x X

y x R x yμ μ
∈

= ∧o  

Here output values are determined in advance by input values so the problem is to find a fuzzy 
relation that satisfies the equation above.  

 

We can present these problems schematically, as a usual matrix equation, taking into account 
that instead of usual number operations   and ⋅ , we have here operations su  and inf on 

interval (that sometimes we also denote, respectively by  and ). 
+ p

[0,1] ∨ ∧

Therefore, we have a problem of the type: Knowing two vectors that contain input and output 
values (two sequences of values of finite fuzzy sets) 1[ ,..., ]nx x  and 1[ ,..., ]my y , problem is to 
find a fuzzy relation satisfying:   

1 1[ ,..., ] [ ,..., ]n mx x R y y∧ = . 

If first fuzzy set is a fuzzy set on a set , and the second fuzzy set is a fuzzy set on a set A B , 
then R  is a correspondence on A and B  (i.e. a subset of A B× ).  

Sometimes this relational equation does not have a solution, and sometimes it has more than 
one solution. In applications, it is an important problem to find the greatest solution of the 
equation. 

In the sequel we give an example of such a problem and a solution. 

 

Example 9. Let [0.8,0.9,0.4,0.1]μ =  be a fuzzy set on a set 

{ }, , ,A a b c d=

A ,1]

. We consider this fuzzy set as a function from 

 to [0 and values are defined respectively by the order 
elements are  listed: 

( ) 0.8, ( ) 0.9, ( ) 0.4, ( ) 0.1a b c dμ μ μ μ= = = = . 

Further, let [0.9,0.6,0.2]ν =  be a fuzzy set on a set 

{ }, ,B p q r= , defined by ( ) 0.9, ( ) 0.6, ( ) 0.2p q rν ν ν= = = . 

The problem is to find a fuzzy correspondence that from  
input values defined by μ  creates the output values defined 
by ν . We have to solve the following relational equation: 
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( , ) ( , ) ( , )
( , ) ( , ) ( , )

[0.8,0.9,0.4,0.1] [0.9,0.6,0.2]
( , ) ( , ) ( , )
( , ) ( , ) ( , )

R a p R a q R a r
R b p R b q R b r
R c p R c q R c r
R d p R d q R d r

⎡ ⎤
⎢ ⎥
⎢ ⎥∧ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

This matrix equation is equivalent with the following system of 
equations: 
 
(0.8 ( , )) (0.9 ( , )) (0.4 ( , )) (0.1 ( , )) 0,9R a p R b p R c p R d p∧ ∨ ∧ ∨ ∧ ∨ ∧ =  

(0.8 ( , )) (0.9 ( , )) (0.4 ( , )) (0.1 ( , )) 0,6R a q R b q R c q R d q∧ ∨ ∧ ∨ ∧ ∨ ∧ =  

(0.8 ( , )) (0.9 ( , )) (0.4 ( , )) (0.1 ( , )) 0,2R a r R b r R c r R d r∧ ∨ ∧ ∨ ∧ ∨ ∧ =
, 

where we take into account that  is the supremum and  
the infimum on [0  real interval. 

∨ ∧
,1]

Analysing the first equation, by the fact that all members 
(except the second one) are less than 0, , we can conclude 
that 

9
( , )R b p must be greater or equal to 0, . Analysing the 

second equation, we have that either 
9
)( ,R a q  or ( , )R b q must 

be equal to  (and no one can be greater than 0,6). 
Further, analysing the third equation, we have that some of 
the elements 

0,6

( , )R a r , ( , )R b r  and ( , )R c r  must be equal to 
 (and no one is greater than 0,2). Therefore, one of the 

solution of this relational equation is e.g.  
0,2

 

0.5 0.6 0.2
0.9 0.6 0.2
0.7 0.8 0.2
0.8 0.5 0.9

R

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 

This solution satisfies the conditions mentioned above, so we 
just enter the determined elements, others are taken 
randomly. This is not a unique solution of the equation, there 
are infinitely many of them. 
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A further application of fuzzy relations and correspondences that will be presented here is in 
connection with methods described in Section 3 for ordinary relations. First, a special type of 
fuzzy relations will be defined and used in the framework of relations determined by fuzzy 
correspondences. 

Let  be a fuzzy relation. Then the fuzzy relation : [R A A× → 0,1] R  is: 
reflexive if  for all ( , ) 1R x x = x A∈ ; 
symmetric if ( , ) ( , )R x y R y x= , for all  ,x y A∈ ; 
transitive if ( , ) ( , ) ( , )R x y R y z R x z∧ ≤ , for all , ,x y z A∈ ; 
antisymmetric if , for all ( , ) ( , ) 0R x y R y x∧ = , ,x y A x y∈ ≠ . 

The fact is that cut-relations of a fuzzy relation satisfying special properties above are ordinary 
relations satisfying analogous properties.  

   The fuzzy relation R is 

-fuzzy  similarity (equivalence) relation if it is reflexive, symmetric and transitive; 
-fuzzy quasi-ordering relation if it is reflexive and transitive; 
-fuzzy  ordering relation if it is reflexive, antisymmetric and transitive. 
 

Cut relations of fuzzy similarity relations are ordinary equivalence relations. 
Cut relations of fuzzy quasi-ordering and ordering relations are, ordinary quasi ordering and 
ordering relations (respectively). 
 

If  ρ  is a fuzzy correspondence  from a set  to a set A B , : [0A B ,1]ρ × → , then a quasi-
ordering relation  on θ B  can be defined similarly as in construction on ordinary relations, and 
then a fuzzy equivalence can be defined analogously as in ordinary case.  

5. Many valued contexts 
 

Another application of fuzzy correspondences are many-valued contexts. In section 2 we 
presented ordinary contexts, which are based on ordinary correspondences and relations. In 
classical formal concept analysis either an object has an attribute or it does not have the 
attribute. In the case of many valued contexts, an object can have an attribute to some extent.  
 A many valued context is an ordered quadruple , where G , ( , , , )G M W I M  and  
are sets and 

W
I G M W⊆ × ×  is a ternary relation. Here, as above,  G  is a set of objects and M  

is a set of attributes. What makes a difference here is a set W , that contains attribute values. I  
is a ternary relation between , G M  and satisfying the following condition:  W

If ( , , )  and ( , , )  then .g m w I g m v I w v∈ ∈ =  

This means that an attribute for an object should have a unique attribute value. 
Therefore, it is possible to consider a special mapping  instead of :J G M W× → I . If is an 
ordered set of attribute values, this represents a fuzzy correspondence.  

W

This is the way how we can consider many valued contexts as fuzzy correspondences.  

In the following, we continue  Example 3. 
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Example 10.  Let the set of objects  consist of following 
mushrooms: 

G

{ }Boletus edulis, Agaricus xanthoderm  Morchella esculentaG = a,  
and the set of attributes contains following characteristics, as in 
Example 3: 

 { }saprophyte, edible, basidiomycetaM = . 

Let { }0, , , ,1W s m g= be a set of attribute values, with the 

following meaning: 

0  - an object does not have an attribute at all 

s  - an object has an attribute to a small extent 

m  - an object has an attribute to a middle extent 

g - an object has an attribute to a large extent 

1 - an object has an attribute (completely). 

The attribute values are ordered in the following way: 

0< < < <1s m g . 

In the following table a mapping  is defined, 
taking into account mushrooms and their characteristics and 
attribute values:        

:J G M W× →

Table 4 
 

Now, we can read from the table that e.g. Morchella esculenta is 
edible to a middle extent (this practically means that it is edible 
when cooked).  
Now, we can consider a cut-correspondence, e.g. for m -cut, and 
then we obtain a usual context, identical to the one from Example 
3.   
 

0m1
Morchella 
esculenta

1s1

Agaricus 
xanthoderma

11s    
Boletus
edulis

basidiomycetaediblesaprophyte

0m1
Morchella 
esculenta

1s1

Agaricus 
xanthoderma

11s    
Boletus
edulis

basidiomycetaediblesaprophyte
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6. Cluster analysis 
Cluster analysis (clustering) is a method for assigning a set of different objects into groups 
(clusters), taking care objects in each group to be as similar as possible, and to be as different 
as possible from objects in other groups.  Frases "as similar as possible" and "as different as 
possible" are related to a selected measure of similarity or distance. According to these criteria, 
some groups, called clusters are produced . Therefore, the cluster  is a group of  objects, which 
is separated as an entity because of the relatively high similarity (low diversity) within the group 
and relatively low similarities (big difference) with members of other groups. In most methods of 
cluster analysis the final result is a partition of the set of considered objects. Then each cluster  
can be divided further into smaller clusters using the same methods, and so on.  

Clustering is a method of statistical data analysis with wide applications, e.g.  machine learning, 
data mining, pattern recognition, image analysis, information retrieval, bioinformatics, etc. 

Methods of cluster analysis are of the two main types:  

1. agglomerative methods (methods in which objects are grouped into clusters according to 
characteristics considered.  

2. divisive (the methods of dividing a set of objects into several groups (clusters)).  

 

Final results is an equivalence relation (partition of a set of objects we started with). 

There are several different types of methods of cluster analysis. Here we  present two:  

1. Method of k-means clustering 

2. Method of fuzzy k-means clustering 

 

Usualy we start from a set of objects we would like to classify into different groups and we have 
a set of characteristics of these objects. Usualy these characteristics are numerical, although 
there are methods that allow classification by qualitative characteristics.  

 

  K- means clustering 

 This technique is used in general when we already have some hypotheses concerning 
the number of clusters. So, we chose a number k  in advance. Then this method will produce 
exactly clusters  that are as distinct as possible.   k
This method starts with  random clusters, and then move objects between obtained clusters 
with the goal to minimize variability within clusters and to maximize variability between clusters. 
Clusters are defined by their centers (so firstly we chose  random centers). Then,  k -means 
algorithm assigns each point to the cluster whose center is nearest. Then, centers are 
calculated again, so that the center is the average of all the points in the cluster (the arithmetic 
mean for each characteristic separately).  

k

k
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So, we start from k  random cluster centers, which determine  clusters. With   we 
denote the cluster centers and with  clusters determined by the center . Now we 
consider all objects and we calculate the distance (using some of the similarity or distance 
measures) of each object from  each of the  centers. For each object we determine the center 
with the minimum distance. Then, we join the object to the nearest center. In case there are 
more centers with the same distance we randomly chose one of them.  Now we have all objects 
divided between  clusters. Further we calculate new center coordinates for each cluster (that 
are average coordinates of all objects in the cluster). Then we continue the procedure in the 
same way: again we consider all objects and calculate distances from the new centers. And 
then again assign  objects to the closest clusters.  In case clusters are identical to those in the 
previous step, we stop the procedure and  adopt the obtained division.  If clusters are different 
then in the previous step, we continue the procedure until some convergence criterion is met 
(usually that the clusters have not changed).  

k , 1,...,ic i k=

ic( )K ci

k

k

 The main advantages of this algorithm are its simplicity and speed and thus it is possible 
to apply it on large datasets. Its disadvantage is that we do not obtain the same result  with 
different initial random assignments. Another disadvantage is that we can use it only with 
numerical characteristics, since the mean has to be calculated.  

Example 11. We start from a set of 8 objects with two defined 
characteristics and our aim is to apply -means algorithm to 
obtain two clusters. This is same as we would like to define 
an equivalence relation on the set of objects with two 
equivalence classes.  

k

Let { }1 2 3 4 5 6 7 8, , , , , , ,A a a a a a a a a=  be a set that contains eight 

species of mushrooms, and let { }1 2,K k k=  be a set 

containing two numerical characteristics (e.g. let  be an 
average size of the cap in centimeters and let  be an 
average size of the spores in microns).   

1k

2k

 1k 2k

1a 3 4 

2a 2 1 

3a 10 9 

4a 4 4 

5a 5 5 

6a 9 4 

7a 8 9 

8a 3 2 

Now we apply -means algorithm to obtain two clusters. In k
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order to calculate distances we use Manhattan (or city-block) 
distance, where the distance between two objects is 
calculated simply as the sum of absolute differences on all 
coordinates. E.g. distance between objects with 
characteristics  and (  is calculated as (10,9) )4.4

10 4 9d = − +

8 7

4 11− = .  

Now, we start from two randomly chosen cluster centers, 
.  1 2(3,3),    c (5,6)c = =

In the first step we obtain the following clusters: 
 and .  1 1 1 2 4( ) { , , , }K K c a a a a= = 2 2 3 5 6( ) { , , , }c a a a a= =K K

Now we calculate new centers of the obtaining clusters 
as average characteristics.   

1 2 4 8a a a= =1 (3,2.75)
4

ac + + +
 

 

3 5 6 7 (8a+= =

5 8}a

2 ,6.75)
4

a a ac + +

7

. 

Now, we have new cluster centres and we assign again the 
objects to the cluster to which it is closest. Now, we obtain 
slightly different clusters: 

1 1 1 2 4( ) { , , , ,K K c a a a a= = , . 2 2 3 6( ) { , , }K K c a a a= =

Again we calculate centers of new clusters: 
 

1 2 4 5 8
1 (3.4,3.2)

5
a a a a ac + + + += = , 

3 6 7
2 (9,7.33)

3
a a ac + += =  

And again we assign objects to the clusters: 
, . 1 1 1 2 4 5( ) { , , , , }K K c a a a a a= = 8 2 2 3 6( ) { , , }c a a a= = 7K K

Since the obtained clusters are identical to those in the 
previous step, we stop the procedure and  adopt the obtained 
division. 
 

 

 

 Fuzzy k-means clustering 

 

The fuzzy -means clustering technique (better known as fuzzy -means) is an extension of   
the k-means clustering algorithm described above. The difference between two techniques is 
that the ordinary -means make a partition of the starting set to the subsets, while the fuzzy -
means clustering produce a family of fuzzy sets instead of a family of ordinary sets. In other 
words, while in the usual k -means clustering an object belongs to only one cluster, in the fuzzy 

k c

k c
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k -means clustering  a particular object can belong to more than one cluster with a certain grade 
of membership. Therefore, in the fuzzy clustering, each object has a degree of belonging to 
clusters, rather than belonging completely to only one cluster. Usually objects on the edge of a 
cluster belong to the cluster with a smaller degree than the objects in the center of the cluster. 
For each object   the degree of membership to the i -th cluster  is calculated. Usually, 
the sum of those membership degrees for any given  is defined to be 1. 

a ( )ik a
a

The algorithm of the fuzzy -means clustering is very similar to the one of -means clusters: k k
First we choose a number of clusters. 
Then we assign randomly for each object a grade of membership to every cluster. 
Then we compute the center for each cluster (using the grades of membership). 
Then we compute grades of membership of each element to every cluster taking into account 
previously computed centers of clusters.  
Finally, we repeat last two steps until some convergence criterion is met (usually that the grades 
of membership to clusters have not changed or that the change of membership grades between 
two  iterations is less than the given threshold) .  
 
This procedure has advantages when compared to k -means algorithm, in some applications it 
is more convenient to have clusters with not clear border.  The disadvantage is similar as for -
means procedure:  that the final result depends on the initial choice of membership grades. 

k

 
Ordinary -means clustering is implemented in almost all statistical and mathematical software 
and fuzzy -means clustering is also incorporated in some of them, like R-package, S-plus and 
Matlab. 

k
k
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