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Introduction

Boolean algebra (named by English mathematician George Boole)
appeared in the mid-19th century as the " mathematics of logic.”
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Introduction

Boolean algebra (named by English mathematician George Boole)
appeared in the mid-19th century as the " mathematics of logic.”

As we shall see, Boolean logic is turned into logic gates on the chip,

and logic circuits actually perform functions such as addition and
multiplication.
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Boolean algebra

Boolean algebra is an ordered 6-tuple B = (B, A,V, ’,0,1), where B is a
non-empty set, A (meet) and V (join) are binary, ’ (complement) is unary
operation, and 0 and 1 are constants, so that the following axioms are
satisfied:

bl: xAy=yAx
b2: xVy=yVx;
b3: xA(yVz)=(xAy)V(xAz)
bd: xV(yANz)=(xVy)A(xVz)
b5 xAl=x
b6: xV0=x
b7: xAx'=0
b8: xVvx' =1
b9: 0 1.

(commutation laws)
(distributivity laws)
(properties of 0 and 1)

(complement properties)
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a) For A# () and P(A) = {X | X C A}, we have the power set
Boolean algebra
(P(A),N,U, ", 0, A).
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a) For A# () and P(A) = {X | X C A}, we have the power set

Boolean algebra
(P(A),N,U, ", 0, A).

b) If n is a square free positive integer (i.e., having the factorization
p1- ... Pn, all primes being different), then the collection of all its
divisors is a Boolean algebra:

(D(n), nzd,nzs,n/x,1,n).
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c) By Axiom b9, the smallest Boolean algebra is a two-element one:
B2 - ({07 1}’ A,V Iv 07 1)’

where the operations are given by the tables:

All 0 vi| i1l 0 !
1(1 0 171 1 110
0(0 O 0(1 O 0|1
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Properties of Boolean Algebras

If F is a statement about Boolean algebras, than its dual is obtained
by replacing each appearance of A by V and vice versa, as well as
each appearance of 0 by 1 and vice versa.
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Properties of Boolean Algebras

If F is a statement about Boolean algebras, than its dual is obtained
by replacing each appearance of A by V and vice versa, as well as
each appearance of 0 by 1 and vice versa.

Axioms are given in dual pairs (except the last one, which is
self-dual). Therefore, it is obvious that the following meta-theorem
holds in the class of Boolean algebras.
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Properties of Boolean Algebras

If F is a statement about Boolean algebras, than its dual is obtained
by replacing each appearance of A by V and vice versa, as well as
each appearance of 0 by 1 and vice versa.

Axioms are given in dual pairs (except the last one, which is
self-dual). Therefore, it is obvious that the following meta-theorem
holds in the class of Boolean algebras.

Duality principle for Boolean algebras: /f some statement follows
from the axioms bl - b9, then also its dual can be deduced from
these axioms.
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Properties of Boolean Algebras

Theorem

In every Boolean algebra, the following identities are satisfied:
a) x A0 =0;

b) xV1=1;

c) xA\(xVy)=x;

d) xV(xAy)=x

e) X\ X = X;

f) xVx=x.
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Properties of Boolean Algebras

Proof a) By the axioms we have

xA0 = (xA0)VO=(xA0)V(xAxX)
= xAOVX)=xA(XV0)=xAx =0.

b) Dually to a).
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Properties of Boolean Algebras

c) By the axioms and by a) we have
xAN(xVy)=(xVOAKxVy)=xV(0Ay)=xV0=x.

d) Dually to c).
e) By the absorption law,

x=xNA(xV(xAx))=xAx.

f) is dual to e).
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Properties of Boolean Algebras

Lemma 2 If for some t in a Boolean algebra we have
yVt=zVtiyvt=zvt,

then y = z.
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Properties of Boolean Algebras

Lemma 2 If for some t in a Boolean algebra we have
yVt=zVtiyvt=zvt,

then y = z.
Proof Axioms imply

y = yVOo=yVv(Aat)=(yVi)A(yVvt)
= (zVEt)A(zVvt)=zV(tAt)=2zV0=1z
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Properties of Boolean Algebras

Theorem 3

In every Boolean algebra the following identities are satisfied:
a) x AN(yANz)=(xAy)Az;

b) xV(yVz)=(xVy)Vz
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Properties of Boolean Algebras

Theorem 3
In every Boolean algebra the following identities are satisfied:

a) x AN(yANz)=(xAy)Az;

b) xV(yVz)=(xVy)Vz

Proof

The previous lemma is applied by replacing y with x A (y A z), z
with (x A y) A z, and t with x; then we have

(xAN(yANz))Vx = x and
(xAy)ANz)Vx = ((xAy)Vx)A(zVx)
xNA(zVx)=x.

16/189



Properties of Boolean Algebras

Similarly,

(xA(yAzZ)VX = (xVX)A((yAz)VX)
LA ((y Az) v X')
yAz)VX, and
(xAY)VX)A(zVX)

(
(
(xVXYA(y VX)) A(zVX)
(
(

(xAy)Az)V X

IA(y VX)) A(zVX)
yVxXYAN(zvX)=(yAnz) VX
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Properties of Boolean Algebras

Hence,
(xA(yA2))Vx = ((xAy)Az)Vx and (xA(yAz))Vx' = ((xAy)Az)VX,

and by Lemma 2,
xAN(yANz)=(xAy)Az.

b) Dually.
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Properties of Boolean Algebras

The following can be easily proved.

Theorem 4

In every Boolean algebra, the following identities are satisfied:
a) (X)) =x; (involution)
B) (x Ay) = X'V ;s

) De Morgan laws
) (xVyy =x Ay, 8 )
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An ordering relation (reflexive, antisymmetric and transitive) is introduced
on Boolean algebras as follows:

x <yifandonly if x Ay =x

The proof that this is indeed an ordering relation is straightforward.
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Theorem 5 The following statements for Boolean algebras are

equivalent:
a) x<y;

by xVy=y;
c)xNy =0;
d)x'vVy=1.

Proof If a) holds, then x Vy = (x Ay) V y =y, by absorption law,
proving b), and similarly other way round.
a)=c) :

xANy =xANyAy =xAN0=0.
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c)=a) :
xANy=(xAy)VO=(xAy)V(xAy)=xA(yVy)=xAl=x.

Equivalence of b) and d) is proved analogously.

The proof is ready.

As usual, we define the relation <:

x <y ifandonly if x # y and x < y.
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Due to the ordering relation, finite Boolean algebras, like all other finite
ordered structures, can be represented by a diagram, so called
Hasse-diagram. Elements of the underlying set are represented by points
(circles) in a plain; points x and y are connected by an upwards oriented
line from x to y if and only if x < y, and there is no z such that x < z
and z < y.
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Boolean algebras with 2, 4, 8 and 16 elements can be drawn by diagrams.
Actually these can be considered as power set algebras P(A), A having 1,
2, 3 and 4 elements, respectively.
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Direct power algebras

The two-element Boolean algebra is denoted by B,. If the power {0,1}",
n € N is taken as the underlying set, and the operations are defined
componentwise, then Boolean algebra B is obtained (the proof is
straightforward:

BS = ({07 1}n7/\7 \/7 ,707 1)7

where for two ordered n-tuples (as,...,a,) and (b1, ..., b,) we have
(a1,---,an) A(b1y...,bpn) :=(a1 A b1,...,an A bp),

and the operation A on the right is the one in B;.
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Direct power algebras

Analogously we define the operation V, and further

(a1,...,an) = (a},...,4a,), 0:=(0,...,0), 1:=(1,...,1).
The order on Bj is given by

(a1,-.-,an) < (b1,...,bp) if and only if a1 < b1,...,a, < by,

and this follows directly from the definition of the order on Boolean
algebras.
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Isomorphism. Representation of finite Boolean algebras

A function f from Boolean algebra B into a Boolean algebra C is a
homomorphism if the following hold:

fixny) = fx)Nf(y);
f(xVvy) = f(x)VIfy)
f(xX) = (f(x));
F0) = o
f1) = 1.
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Isomorphism. Representation of finite Boolean algebras

Homomorphism from B to C which is a bijection is said to be an
isomorphism.

We need the following notion. An element a of a Boolean algebra B is an
atom in B, if a#0, and 0 < x < a implies x =0 or x = a.

Boolean algebra B is said to be atomic, if for every x # 0, there is an
atom a, such that a < x (under each non-zero element there is an atom).
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Isomorphism. Representation of finite Boolean algebras

Lemma 6 Every finite Boolean algebra is atomic.

The following is the Representation theorem for finite Boolean
algebras.

Theorem 7 Every finite Boolean algebra B is isomorphic to the power
set Boolean algebra P(A), where A is the set of atoms in B.
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Isomorphism. Representation of finite Boolean algebras

Corollary 8 Every finite Boolean algebra has 2" elements, where n is
the number of its atoms.

Corollary 9 Any two Boolean algebras with the same number of
elements are isomorphic.
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Isomorphism. Representation of finite Boolean algebras

Finite Boolean algebras can be represented also as follows.

Theorem 10 For a Boolean algebra P(A), where A= {a1,...,an}, the
following is satisfied:

P(A) = BI.

Since every finite Boolean algebra is isomorphic to a power set algebra
we have the following consequence.

Corollary 11 Every finite Boolean algebra is isomorphic to the direct
power of a two-element algebra.
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Boolean terms and term-functions

Boolean terms are defined recursively:

1. Variables x, y, z,... and constants 0,1 are Boolean terms;

2. If A and B are Boolean terms, then also (AA B), (AV B) and (A’) are
Boolean terms;

3. Boolean terms are only those expressions which can be obtained by
applying the above two rules finitely many times.

By an additional agreement, external parentheses are omitted.
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Boolean terms and term-functions

All previously listed expressions, including those by which axiom identities
are formed, are Boolean terms in the sense of the above definition. In
addition, according to associativity laws, the following expressions are also
considered to be Boolean terms:

XPEAXGEN - A X XPPV X532 Vo VX

n > n

where x1, ..., x, are distinct variables and «; € {0, 1}, with

o. | x for a=1
T X for a=0.
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Boolean terms and term-functions

Due to the analogy with statement forms in logic, the above terms are also
called elementary conjunction and elementary disjunction, respectively.
An elementary conjunction (disjunction) is said to be canonic with respect
to variables xi, ..., x, if all these variables appear in the term.

Following mentioned analogy with statement forms, Boolean term of the
form ki V ---V kp,, ki being elementary conjunctions, is said to be a
disjunctive form, abbreviated as DF. If all elementary conjunctions in a
DF are canonic with respect to variables xi, ..., Xx,, then this disjunctive
form is canonic, briefly CDF.

Terms which are defined dually to DF and CDF are respectively
conjunctive form and canonic conjunctive form, denoted by CF and
CCF.
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Boolean terms are e.g.:
XANyVvZY, (xv(yAX)) vz, 1AX, (V) AWAV))Vv.

The first and the second are ternary, the third is unary, and the last one is
a binary term.
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Terms x, x A Z', x Ay Au' A V' are elementary conjunctions, and x, x V y/,
x"V y V Z' elementary disjunctions. With respect to x, y, z elementary
conjunctions x Ay A z, x Ay’ A Z’ are canonic; with respect to the same
variables, the term x’ VV y’ V z is a canonic disjunctive form (CDF).
Examples of DF are (x Ay')Vz, (X Ay)V(xAz)V (X' AyAZ).

With respect to x,y, a CDF ise.g., (x Ay') V (x' Ay), and with regard to
x,y,z, a CDF is

(XAYANZ)V(XAyANZ)YV(XAY ANZ)V (X ANy AZ).
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Equivalent terms

Boolean terms u and v are equivalent if the identity u = v can be
deduced from axioms for Boolean algebras.
Using induction, one can prove the following.

Theorem 12 For every Boolean term t(xi,...,x,) there is an
equivalent term f which is CDF with respect to variables xi, ..., X,.
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fix,y,z) = (xVy')y vz,

then the corresponding CDF is constructed as follows:

(
(x' /\y)\/z:

XAy A@zVZ)VEAKXV)AN(yVY)) =

XAy AZ)V XAy NIV (ZAxAy)V(ZAxAY)V
(ZAXANY)V(ZAXNY)=

XAy AZ)V XAy ANZYNV (XAyANZ)YV(XAY NZ)V (X Ny AZ).
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Term functions

Each Boolean term f(x, ..., x,) determines on an arbitrary Boolean
algebra B a term function B” — B, also called a Boolean function,
fs(x1,...,xp): variables are replaced by elements from B, and then
operations corresponding in B to A,V i ’ are applied. For a two-element
Boolean algebra B> the converse also holds.

Theorem 13 Let ¢ : {0,1}" — {0,1} be a function (n-ary operation)

on By. The there is a Boolean term g(xi, ..., x,), such that the
corresponding term function fg, coincides with .
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Term functions

The sketch of the proof. Consider the Boolean term

g(xt, -3 Xn) = Vi(ay, amefony(Plats .. .oan) AXTH A Axp),
since a € {0,1} x® = x/, and x! = x.

For e.g., n = 2, the formula is developed as follows:

glxi,x) = (9(0,0) Axg Axz) V (0(0,1) Axg Axe) V
(p(1,0) Axy AX5) V (0(1,1) A x1 A x2).

Values ¢(aq,...,a,) are taken from the set {0,1}. It is not difficult to
check that the term function gg, (determined by the term above)
coincides with the function .
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Term functions

The term defined above can be transformed to an equivalent CDF, due to
the following theorem.

Theorem 14 Let ¢ : {0,1}" — {0,1} be an operation on By, which is
not constantly equal 0 and g the corresponding term defined above.
Then g is equivalent with CDF

f(x1,. .o xn) = \/@(al,...,a,,):l(xf“ A Axg),

If  is a zero function then the corresponding term is e.g.,

F(X1,y -y Xn) = x1 A X].
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Term functions

Theorem 15

If v and v are Boolean terms, then the identity u = v holds on every
Boolean algebra if and only if this identity is satisfied on a two-element
Boolean algebra Bs.

REMARK. The above theorem provides an answer to so called Word
problem for Boolean algebras. There is an effective algorithm to check
whether an identity u = v is satisfied on every Boolean algebra: one
should check it on By, using e.g., tables of values.
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By Theorem, elementary conjunctions in the corresponding Boolean term
f(x,y,z) apply precisely to the rows in which the function ¢ has value 1.
It is straightforward to check that the function fz, coincides with .

x|y |z] elxy2)
0]0]0 1
0/0/1 0
0|10 0
0|11 1
1100 0
1101 1
1|10 0
1011 0

fx,y,z2) = (X ANy ANZYV (X' Ny AZ)V (X Ay A2).
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Operations on the set {0,1}

Theorem 16 The number of different n-ary operations on the set {0,1}
is 22",

By Theorem, every operation on {0,1} (not only the above given unary
and binary ones, but every n-ary for each n € N) IS Boolean, i.e., for
each of these there is a corresponding Boolean term.

By Theorem, all n-ary operations on {0, 1}, can be expressed (using
superposition) only by g3, f» and fg, since these symbols correspond
respectively to /', A i V in CDF. Due to De Morgan laws, each of two
binary operations (f, and fg) can be omitted, and the remaining two
can be used to express all others.
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Minimization problem

Boolean functions appearing in real life problems usually have many
variables (often more than 10). Therefore the corresponding Boolean
terms are complicate and long (as expressions). It is necessary to prevent
or minimize appearance of errors and to make the usage of these terms as
fast as possible. In addition, we have to enable construction of very small
objects (like chips) preforming the corresponding operations, and to lower
their cost. Therefore, we have to simplify these terms. In some sense, we
need to minimize the number of occurrences of variables and sub-terms in
the Boolean term we are handling. Since (canonic) disjunctive forms are
representatives of all Boolean forms, our task is to solve this minimization
problem within the class of disjunctive forms.
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Minimization problem

In order to simplify our notation, in the following we use the sign - instead
of A in all Boolean terms.

Now let F be a Boolean term which is a disjunctive form. We denote by
vE - the number of all appearances of variables in F and

cr - the number of all appearances of elementary conjunctions in F.

Let F1 i F» be Boolean terms being DF. We say that F; is more simple
than Fy, if ve; < v, and kg, < kg,, and at least one inequality is strict (
< ). A disjunctive form ¢ is minimal disjunctive form of a term F, if

¢ = F and there is no DF which is more simple than ¢ and equal to F.
Boolean term may have several minimal DFs.
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(a) If

F(x,y,z) =xyVx'zVxz
then ve = 6, and kg = 3.
(b)
Fi(x,y,z) = xyz' V xyz Vi, =6 ki =2
Fo(x,y,z) = xyVzZ'Vxy vi,=5 kg =3
Fi(x,y,z) = x'y' vV xy' Ve, =4 kg, =2.

The term F3 more simple than F; as well as then F», and F;, F, are not
comparable in this sense.
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(c) Boolean term ¢(x) = x is a minimal disjunctive form for the term

F(x,y) = x V xy, since x = x VV xy, and there is no DF which is more
simple than x, being equal to F.
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Field GF(2)

Operations 7 and £, are given by the tables, and denoted respectively by

"@" and " -". These can be used in a particular way to express all other
operations on the set {0,1}.

©|0 1
00 1
1|10

= O
O OO
= Ol
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Field GF(2)

Theorem 17 The structure ({0,1},®,-) is a field, denoted by GF(2)
(Galois Field, according to the name of the French mathematician from
18th century, Everisto Galois).

To construct polynomials over the field GF(2), we use its properties

x®x=0 and x?=x-x=x,

as well as distributivity laws. An arbitrary polynomial with one
variable
apx" ® an—lxn_l D ---DaixD ag

reduces to
gix)=(a-x)®b, abe{0,1}.

50/189



Field GF(2)

Similarly, general form of a polynomial with two variables is
fx,y)=(a-x-y)@(b-x)@(c-y)®d, ab,c,de{01}.

Varying coefficients we get:

gi(x) = (0-x)®0=0
ex) = (1-x)®0=x
g(x) = 1-x)pl=xa1
gi(x) = (0-x)pl=1.

Functions corresponding to these polynomials are those 4 presented as
functions on the set {0,1}.
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Field GF(2)

Similarly there are 16 polynomials of two variables. As an example, we
have

fx,y)=(x-y)oxoy

which is a polynomial corresponding to disjunction. Since we have also

g3 = x @ 1, it is possible to express all operations on the set f {0,1} as
polynomials over GF(2).

Functions corresponding to these polynomials are the ones presented as
two variable functions on the set {0,1}.
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Here we determine the polynomial over GF(2), corresponding to the
operation fig (logical equivalence).

£(0,0) = (a-0-0)®(b-0)®(c-0)dd =1
f(0,1) = (a-0-1)®(b-0)®(c-1)®dd =0
f(1,0) = (a-1-0)®(b-1)®(c-0)®dd =0
f(1,1) = (a-1-1)o(b-1)d(c-1)d = 1.
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Hence
d = 1
cdd=0ie, c = 1
bdd=0ie, b = 1
adbb®chdd =1, ie, a = 0

and we get the polynomial

fx,y)=x@yel
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Communication system

source ‘—>€ncodin§—~ channel ‘——gecoding—wecipient

f

r——=-=1

I noise |
|
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Probability distribution

Let X = {x1,...,xn} be a finite nonempty set and p: X — R a function
satisfying:
a) pi=p(xj)) >0fori=1,...,n and

b) Sy p(xi) = L.

The function p is a probability distribution over X.
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A set X = {x1,...,Xxn}, together with a probability distribution p(x) over
X, is said to be a finite probabilistic system (shortly system), and it is
denoted by {X, p(x)}. Elements of the set X are called states, and p(x)

should be understood as a probability for a system to be in the state x.
a) The system {X, p(x)}, where X = {1,2,3,4,5,6} and

p(i) = 6 i=1,2,...,6, represents the outputs of a fair die rolling.

b) If X is the alphabet of some language, then relative frequencies x of
n

appearance of each letter x in some printed (written) text could be
considered as probabilities p(x). The obtained system is {X, p(x)}. O
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Two-dimensional system

Let X = {x1,...,xa} and Y = {y1,...,¥m} be finite sets, and

X xY =A{(x,y) | x € X, y € X} the corresponding direct product.
{X XY, p(x,y)} is a system in which p(x, y) represents a probability
distribution over (x,y), x € X, y € Y.

58/189



Two-dimensional system

Let X = {x1,..., %2} and Y = {y1,...,¥m} be finite sets, and

X xY=A{(x,y) | x € X, y € Y} the corresponding direct product.
{X XY, p(x,y)} is a system in which p(x, y) represents a probability
distribution over (x,y), x € X, y € Y.

Marginal distributions are defined on X and Y by:

p(x;) == Z p(xi,yj)ii=1,....n

ijY

p(y)) == > p(xi,y)ij=1,...,m.
X,'EX
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Two-dimensional system

If x; € X and p(x;) > 0, define for each j € {1,..., m} p(yj|x;) := %.
p(y|x;) is a probability distribution over Y, provided that p(x;) is given
and p(x;) > 0, for some fixed x; € X. It is called conditional distribution

over Y with respect to x; € X.
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Two-dimensional system

If for the system {X x Y, p(x,y)} we have

p(xi,yj) = p(xi) - p(yj) for all x; € X, y; €Y,

then X and Y are said to be independent subsystems. Otherwise, they
are dependent.
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(i)
Let {X, p(x)} be the system connected with rolling a fair die, and
1
{Y,p(y)}, where Y = {y1,y2} and p(y1) = p(y2) = T the system arising
from tossing a coin.
If both (a die and a coin) are rolled, then the system {Y x X, p(y, x)} is

1
obtained, where p(y;, xj) = Y for all i € {1,2}, j € {1,...,6}, since

card{Y x X} =12 and all outputs are equally probable. Hence
p(y,x) = p(y)p(x), implying that Y and X are independent.

62/189



(i)

Suppose now that first a fair die is rolled. If an even number appears, then

an irregular coin is tossed, with the probabilities of outputs i (head) and
SN : : .
7 (tail). If the output is an odd number, then another irregular coin is

3.1
tossed, the probabilities (in the same order) being 7 [ = Both
probabilities are conditional:

1 3 3 1
pUal) = 0 PUals) = 5 and p(ylxn) = 5+ Plyelxn) = 5

where x, € {2,4,6} a x, € {1,3,5}; y1 and y» correspond respectively to
the outputs "head” and "tail”.
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Since we have p(y, x) = p(x)p(y|x), the distribution p(y, x) of the system
Y x X is given by the following table.

Y\X| 1 2 3 4 5 6 |p(y)

vi | 1/8 1/24 1/8 1/24 1/8 1/24| 1/2

yo |1/24 1/8 1/24 1/8 1/24 1/8 | 12
p(x) | 1/6 1/6 1/6 1/6 1/6 1/6
Marginal distributions, p(x) i p(y), are also given, and it can be seen that
the systems {X, p(x)} and {Y,p(y)} are not independent.
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(i)
Let X = {x1,x2,x3}, and Y = {y1,y2}. The system {X x Y, p(x,y)} is
given by its distribution

Y\X| x1 x x3 |p(y)

v 102 0,1 0 |03

v 10,3 0,3 0,1]0,7

p(x) (0,5 0,4 0,1

Marginal distributions p(x) i p(y) of subsystems {X, p(x)} and {Y,p(y)}

are also filled in.
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Conditional distributions are counted as follows:

X X1 Xo X3 X |x1 x x3
2 1 3 3 1
- 0 > 2 =
Pixin) | 3 3 pixly2) | = = 2
S - al Ea I AN L0
= i 0 1

p(y|x1) = p(y[x2) 7 7 p(ylx3)
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The degree of uncertainty for the system {X, p(x)} of being in some of its
states is measured by its entropy.
The entropy is a function

H:D,— R, neN, where
n
Do ={(pr,-.,Pn) €R" | i 20, Y pi=1}

i=1
is the set of all probability distributions over an n-element set.
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The formula is given by

H(Pl,---,Pn = ZPIIOgQPIa

For a given system {X, p(x)}, where X = {x1,...,xp}, the value

H(pla"'vpn)

is denoted by H(X).
We introduce the following notation.
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Theorem 18 The function H(p1, ..., pn) has the following properties:
| If for m,n € N m < n, then h(m) < h(n);
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Theorem 18 The function H(p1, ..., pn) has the following properties:
| If for m,n € N m < n, then h(m) < h(n);

Il For m,n e N
h(m - n) = h(m) + h(n);
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[l Let 1 < r < n, r &€ N. Divide the distribution into two parts:
Pls---»Pr | Pr1,...,Pn and denote

gu=p1+--+p, Q@2=pPr+1+--+pPn-
Then

H(plu”'apmpr-‘rlv'”apn) =

P1 Pr Pr+1 Pn
H(qgi,q2) + H(—,...,—)—{—ng(—,...,—).
@) q1 q q2 q2

71/189



[l Let 1 < r < n, r &€ N. Divide the distribution into two parts:
Pls---»Pr | Pr1,...,Pn and denote

gu=p1+--+p, Q@2=pPr+1+--+pPn-
Then

H(pla”'upmpr-‘rlv'”apn):
P1 Pr Pr+1 Pn
H 1, 2+CI1H(—’---7—)+Q2H<—’---7—>-
(1, 42) a1 q1 q2 92

IV H(p,1— p) is a continuous function over p, for p € (0,1).
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Units and properties of entropy

11 .
/—/(5, 5) — h(2):=1 bit.
(bit — binary digit)

H(p,1— p) = —plogp — (1 — p)log(l — p)
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Units and properties of entropy

 H
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Units and properties of entropy

We define 0 - log 0 := 0, then the function H(p1, ..., pn) is defined for all
p € [0,1], and it is non-negative, since in this interval plogp > 0).

Theorem 19
H(p17 .- -7Pn) < IOg n,

1
and the equality holds if and only if for all j € {1,...,n}, p; = o
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(a) If a chess piece is placed randomly on the board, then the system X
with 64 states is obtained: the distribution is uniform, i.e., for each state
x, p(x) = 1/64. Therefore,

H(X) = h(64) = log, 64 = 6 bits.

This is the greatest entropy value for systems with 64 states.

(b) The output of the roulette game is a system X with 36 state and the
uniform distribution: for each output x (the number between 1 and 36) we
have p(x) = 1/36. Therefore,

H(X) = h(36) = log, 36 = 5.1699 bit.
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(c) Let {X, p(x)} be given by:

o x1 x X3
X_(O,3 0,5 O,2>'
Then

H(X) = -0,3log0,3 —0,5log0,5—0,2log0,2 =
= 0,5211 + 0,5000 + 0,4639 = 1,4850 bit.
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Entropy of two-dimensional system

For a two-dimensional system {X x Y, p(x, y)}, we have by the previous
definition

HIX x Y)== > p(x,y)logp(x,y).
xeX,yeY
H(X) == p(x)logp(x), where p(x) =Y p(x,y);
xeX yey
H(Y)=-> p(y)logp(y), where p(y) = p(x,y);
yey xeX
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Entropy of two-dimensional system

Theorem 20
H(X x Y) < H(X)+ H(Y),

and the equality holds if and only if X and Y are independent. We also

define
HIXIY) == Y p(x,y)logp(xly)
xeX,yeY
HYIX)=—= > plx.y)logp(y|x).
xeX,yeY
Theorem 21

H(X x Y) = H(X) + H(Y|X) = H(Y) + H(X|Y).
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Entropy of the system arising from rolling a die and tossing irregular coins
(Example (ii)):

YNX| 1 2 3 4 5 6 |py)
vi | 1/8 1/24 1/8 1/24 1/8 1/24| 1/2
va |1/24 1/8 1/24 1/8 1/24 1/8 | 1/2
p(x) | 1/6 1/6 1/6 1/6 1/6 1/6
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1
H(Y x X) = —6(§ |og8+—| gﬂ) — 3,396 bits.

This is an average uncertainty when the die and a coin (irregular) are
thrown.

H(X) = log6 = 2,585 bits
H(Y)=log2=1 bit.

The systems Y i X are not independent. Therefore the sum
H(Y) 4+ H(X) = 3,585 bits is greater than H(Y x X).
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Information

For a system {X, p(x)}, the entropy H(X) is considered to be (the
measure of) its information, denoted by /[X]:

IX]:==>_ p(x) log p(x).

xeX

For a two-dimensional system {X x Y, p(x, y)}, we define the mutual
information of its subsystems X and Y by

11X, Y] = H(X) - H(X|Y).
By this definition we have
pX,y
X, Y= > pon)ilxyl= > plxy) jog 2eY)
P p()p(y)
xeX,yeY xeX,yeY

and also the following are satisfied.
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Information

Theorem 22
(M) I[X, Y] =H(Y)— H(YI|X);
(i) I[X, Y] =H(X)+ H(Y)— H(X xY).
It follows also that
11X,Y]= 1Y, X].

Information is measured in bits.
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Suppose that for some geographical place chances of rain for June 15. are
0.4, and for September 15. these chances are 0.8. Further, suppose that
for June 15. weather forecast "rain” is true in 60% of cases, and the
forecast " no rain” matches in 80% of cases; for September 15. the
forecast "rain” is true in 90%, and "no rain” in 50% of cases.

The question is for which of two days the forecast gives more information
about the weather.
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Denote by Xj the system whose states are x;— it is raining, X1— no rain,
all for June 15. Similarly, let X5 be the corresponding system with states

X, Xo for Septembar 15.
Since p(x1) = 0,4, p(x1) = 0,6, we have

H(X1) = —0,4log 0,4 — 0,610g 0,6 = 0,971 bit .
Similarly, from p(x2) = 0,8 and p(x2) = 0,2, we get

H(Xz) = 0,722 bit.
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Let Y; the system whose states y; and y; are considered respectively as
the forecast is "rain”, and the forcast is "no rain” for June 15. and let Y5,
be the corresponding system with states y» and y, for September 15.
Since

P(X1’}/1) = 0.6, P(Yllyl) =0,4,

p(Xl |YI) =0,2, p(?l |YI) =0,8,
and by

p(xa) = p(y1)p(xilyr) + p(¥1)p(xalyy)

(total probability formula), with p(y;) =1 — p(y1), we obtain

p(y1) =0,5, p(y;) =0,5.
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Similarly, by

p(x2ly2) = 0,9 p(X2|y2) = 0,1,

p(x2|y2) = 0,5 (X2[¥,) =0,5,
and

p(x2) = p(y2)p(x2ly2) + p(¥2)p(x2|¥2)
we get
p(y2) = 0,75, p(y,) =0,25.
Hence
H(X1|Y1) = —0,5(0,61log0,6 —0,4log0,4 —0,2log0,2
—0,8log0,8) = 0,846 bit,

and

H(Xz|Y>2) = 0,602 bit.
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By
I[X1, Ya] = H(X1) — H(X1| Y1),
1[X2, Ya] = H(X2) — H(X2| Ya],

we finally get

/[Xl, Yl] = 0,125 bit,

I[X2, Y2] =0,120 bit .
Conclusion: the forecast for June 15. provides more information, in spite
of the fact that the probability of precise forecast for this day is less.
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Source

Let X = {a1,...,a,} be an alphabet. Its elements are letters. Let

P ={p1,...,pa} be a probability distribution over X. Then the system
{X, p(x)} is called discrete memoryless source over X (in the following
we use the term source), and is usually denoted by (X, P).

Entropy of the above source is given by

H(X) == p(x)log p(x).

xeX
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Communication channel

— channel —

noise
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Communication channel

Input alphabet: U = {u1, ..., u.};
output alphabet: V ={w1,...,vp}.
Channel matrix:

p(vilur) p(velur) ... p(velur)
p(viluz) p(valuz) ... p(vs|u2)
n= . . .
p(vilua)  p(valua) .. p(vp|ua)
K= (U,P,V),

K is a discrete stationary memoryless channel over alphabets U and V
(in the sequel: channel).
Properties of the matrix:
1) p(vjlui) >0, i=1,...,a, j=1,...,b;
2) ZJI'):1 p(vjluj)) =1, forevery i=1,...,a.
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(/) Noiseless channel

=

= O O
O O =
o = O

U={u,u,u3},aV="_{v,w, v},
p(volur) =1, p(v3luz) =1 i p(vi|us) =1

u — W
u — V3
uz — vi.
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(ii) Useless channel

q_[02 05 03
~ 102 05 03

U= {ula U2}a V = {Vlv V2, V3}a
p(vilu1) = p(vi|u2),

p(valu1) = p(va|u2),
p(vslu1) = p(vs|un),
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(iif)
0,2 0,1 0,7
Nn=| 0 o0 1
0,5 0,5 0
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Output system

Let K = (U, P, V) be a channel connected to the source (U, P), i.e., to
the system {U, p(u)}. Then for every v; € V we define

a

p(v;) = > p(ui)p(vj|u;). Hence
i=1

a

p(v)) =Y p(ui) Y p(vilui) = > p(ui)-1=1.
i=1

b
j=1 i=1 j=

[y

IN this way, a system {V/, p(v)} is obtained at the output of the channel.
If Py = (p(u1),...,p(ua)) and Py = (p(v1),...,p(vs)) then

Py =Py-M.
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(i) Let {U, p(u)}, gde je U ={u1,uz}, p(u1) =0,2, p(uz) =0,8, and

0,4 0,6
n= [ 0,2 0,8]

The two-element system at the output is obtained using

PV:PU‘”Z

(b)) = 0,208 | 55 2 |

and thus p(v1) = 0,24, p(wvz) =0, 76.
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(i) Let the channel be useless. Then we have at the output

a

p(vi) = D p(u)p(vilui) = p(vilui) Y p(ui) = p(vjlui),

i=1 i=1

since each column of the matrix contains equal elements.
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Channel capacity

If the channel K = (U, P, V) is connected to the source (U, P), then it is

possible to find
p(u|v), for each v € V satisfying p(v) > 0:

_ e b
plulv) = 228
Indeed, a distribution is obtained:
: Sly) — 2~ p(ui)p(v|ui) _ i p(u)p(viu) _ p(v) _
gp( ilv) ; p(v) p(v) ) 1.
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Channel capacity

Similarly, a distribution can be defined on U x V as follows: If
(u,v) € U x V, then

p(u;v) = p(u)p(viu) = p(v)p(ulv),
and >, yyeuxv P(U, v) = 1.
Therefore, starting with the channel with matrix M and the source (U, P)
we can calculate the entropies

H(U), H(V), H(U|V), H(V|U) and H(U x V).

Also the mutual information /[U, V] of the input and the output of the
channel (related to the given source) can be derived.
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Channel capacity

The capacity of the channel K is given by

C := max I[U, V],
PUeDa

where D, is the set of all distributions over U.
By
ITU, V] = H(V) — H(VI|U),
it follows that
C>0,

and the equality holds if and only if H(V) = H(V|U) i.e., if U are V
independent. This means that for a fixed v € V and for each v € U
satisfying (at the input) p(u) > 0, we have

_ plu,v) _ pu)plv) _
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Channel capacity

The corresponding channel is useless and for this channel we have C = 0.
On the other hand there are channels without lost of information.
These are defined as ones satisfying H(U|V) = 0. Such a channel is (but
not only) e.g., any noiseless channel.
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Symmetric channels. BSC

A channel is symmetric if each row of its matrix is a permutation of the
first row, and each column is a permutation of the first column. It has a
square matrix a X a and is also said to be an a-ary symmetric channel.
In particular, if both the input and the output alphabets are binary, the
corresponding symmetric channel is called a binary symmetric channel,
or BSC. lts matrix is of the form

I‘IZ[I_6 € :|0§€§1.

€ 1—¢

.. ; . 1
If e=0 or e =1, this is a noiseless channel, while for € = 5 a useless
channel is obtained.
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(1) A ternary symmetric channel:

0.5 03 0.2
M= 03 02 05
0.2 05 0.3

(i) An example of a BSC:

0.8 0.2
= [ 0.2 0.8]
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Capacity of symmetric channel

Theorem 23 For a symmetric a-ary channel,
a
C =log a-l—Zr,-Iogr,-,
=il

where r, ..., r, are elements of the first row of its matrix.
In particular, for BSC with the matrix

r|:[1_€ ¢ ]ogegl,

€ 1—c¢

C=1+(1—-¢€)log(l—¢€)+eloge.
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Capacity of symmetric channel

Graphic representation of this function is as follows.

1
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Word semigroup

A finite set X is called an alphabet, and its elements are letters.
X*=XUX?U---UX"U--= X
ieN

X* is the set of words over X.

Ordered n—tuples (xi, ..., x,) from X* are denote as words: xj - - - Xp.
The length |x| of the word x = Xy - - - x,, is the number of its letters, i.e.,:
|x| = n if and only if x € X".

A binary operation concatenation is introduced on X* as follows.

If x,y are from X*, x=x3---Xp, Y = V1 ¥Ym, then

zZ=Xxy,
where z=Xx1- - Xp Y1 VYm-
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Word semigroup

x is called a prefix, and y a suffix in the word z. In other words, x € X* is
a prefix in z € X* if and only if there is y € X*, such that z = xy.
Similarly, y is a suffix in z if and only if there is x such that z = xy.

The empty set can be added to the set of words. Then it is called the
empty word(frequently denoted by A). We then have

X® = X*U{0}.
By definition, the empty word is a prefix and a suffix of every word x from
X®:
Ix =:x; x0=:x.

The length of the empty word is 0, also by definition.
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Word semigroup

It is straightforward to see that the operation of concatenation is not in
general commutative (with the exception of the set of words over a
one-element alphabet), and that it is associative. Therefore, we have the
following.

Theorem 24 a) The ordered pair (X*,-), where X* is a set of words
over X, and ” -” is a concatenation, is a semigroup (so called the
semigroup of words over X).

b) Under the same conditions (X®, ) is a semigroup with unity (a
monoid).
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If X ={0, 1}, then some words over X are 0, 1,00,01,10, 11, 000, etc.,
and the corresponding lengths are respectively 1,1,2,2,2, 2,3, etc.

The concatenation applied on x = 100 i y = 02 as words over

X ={0,1,2} is the word z = 10002. The sets of prefixes and suffixes of
this word are respectively {1, 10,100, 1000} and {0002,002, 02, 2}.
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Coding - basic definitions

Two finite sets are given.

A:{al,...,aa}, a>1, iB:{ﬁl,...,ﬁb} b> 1.

A is called the source alphabet and B the code alphabet. The number
b is the code base.

Let A* C A*. Any 1 — 1 mapping (injection)
f:A — B*

is a coding of words over the alphabet A).

A f(A)
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Coding - basic definitions

The set f(A’) C B* is a code, and its elements are code-words. A coding
is said to be alphabetic if A’ = A that is, if precisely the letters from A
are coded. From now on, we investigate only alphabetic codings. By the
above, these are injective mappings f : A — B*, and the cod V = f(A) is
a set of words, the subset of B*. Each message, the word over A is coded
letter by letter. In this way the coded word over B also belongs to B*.

A coding f : A — B* is with fixed code-word length if f(A) C B", for
some n > 1. The corresponding code is called a block-code.

In general, i.e., if code-words have different lengths, we have a coding
with varying code-word length.

In general, identification of the original message from the received, coded
one, is called decoding. Precise definition is given in the sequel.
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Let A={1,2,...,9,0} and B = {0, 1}. The code alphabet B is binary.

a) 1 — 10
2 — 110
3 — 1110
9 +— 1111111110
0 — 11111111110
b) 1 +— 0001 6 — 0110
2 — 0010 7 — 0111
3 — 0011 8 — 1000
4 — 0100 9 — 1001
5 — 0101 0 ~— 0000

The code in a) have been used in telephone communication, and the cod

in b) is the Binary Coded Decimal (BCD - code).
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In the above mentioned telephone communication, presently the following
BCD code is used!:

c) 1 — 0001 9 +— 1001
2 — 0010 0 ~— 1010
3 — 0011 *  +— 1011
4 — 0100 # ~— 1100
5 — 0101 A — 1101
6 — 0110 B — 1110
7 — 0111 C — 1111
8 — 1000 D — 0000

!California Micro Devices, CM8870,/70C, www.calmiro.com. 113/189



Unique decipherability. Prefix code

A code V = f(A) C B* is said to be uniquely decipherable if every word
x € B* can be in at most one way decomposed into code-words vj, ..., Vv;
from V/, so that

X=Vjy V.
A cod V is said to be a prefix code if neither of code-words from V is a
prefix of some other code-word in V.
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The code V = {01,11,000,0011,0010} is a prefix binary code. If
represented by a code-tree (see the diagram), then code-words are final
(end) nodes.

(In a code tree there is a branch from a node x to a node y (downwards in
the diagram) if and only if x and y are prefixes of code words, and

y = ay, where « is a letter.)

Theorem 25 A prefix code is uniquely decipherable.
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Kraft's inequality

Theorem 26 Let V = {v1,...,v,} be a prefix code over an alphabet
with the base b, such that |vi| = n1,...,|va| = ns. Then, the inequality

S bms,
i=1

is satisfied (|v| denotes the length of v).
The converse:

Let ni,...,n,, b be a sequence of a + 1 positive integer, with

a>1, b> 1. If these integers satisfy the inequality, then there is a
prefix code V = {v;,...,v,} over an alphabet with the base b, such
that |vi| = ny, ..., |va| = na.

Formula above is called Kraft’'s inequality.
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Let V = {00, 01,100, 1010, 1011}.
V is a prefix binary code and its code-word lengths are 2,2, 3,4, 4. Kraft
inequality is satisfied:

R s
DZNOZENO RO RO T
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Contrary, starting with numbers
n1:n2:2, n3:3, n4:n5:4, b:2,
satisfying Kraft inequality, it is possible to construct a prefix binary code

whose code-word lengths are ny, ..., ns.
q1 =0,

a2 = 2_2a

G=2"2+272

G =2 L= |
gs = 272 + 272 4 273 -+ 2747

(g1)2 = 0,00; (g2)2 = 0,01; (g3)2 = 0, 100; (g4)2 = 0,1010; (g5)> = 0, 1011.

Decimal digits represent the above code V.
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Conditions for unique decipherability

Not only prefix codes have a property of unique decipherability.
Let V ={vi,...,va} be a code constructed over the alphabet B.
We construct a particular sequence of words from B* :

Si={xeB*|vwxeV, forsome veV}.

119/189



Conditions for unique decipherability

These are suffixes of code-words, with prefixes in V.
So =S,USY, where

S,={xeB*|vwe5, forsomeve V} i

Sy ={xe B*|s;x € V, forsome s; € 51}.
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Conditions for unique decipherability

S5 contains suffixes of words in S; having code-words as prefixes. SJ
contains suffixes of code-words having prefixes in S;.
Similarly, for each n € N we have v

S, =S, US/, where
S, ={x€ B*|vxeS,_1, forsomev e V} and
S) ={x€ B*|s,_1x€ V, for some s,_1 € S,_1}.
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Conditions for unique decipherability

let S:=5USU....
Theorem 27 A code V = {vi,..., vy} over B (V C B¥) is uniquely
decipherable if and only if

SNV =40.

Theorem 28 [McMillan’s Theorem] Any uniquely decipherable code
satisfies Kraft’s inequality.
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Si S S S Ss S Sy
U || {0,10,110,1111} | @ 0 0 0 0 0 )
1% {10,101, 001} {1y {o,01} {01} O 0 ) 0
w | {o,010,101} | {10} {1} {01} {1,0} {o1,10} {1,0} {01,10}

U is a prefix code and S; = (). Consequently all other above defined sets
of suffixes are empty, and therefore S = ().
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For the code V, S = {1,0,01}, therefore SNV = (), and V is uniquely
decipherable.

For the code W, we have S = {1,0,10,01}, SN W = {0} and this is not
a uniquely decipherable code. We construct a word which can be decoded
in two ways:

N

x: 0 10 1 01 0  ~—o

-

Here we have s, =0, s3 =01, s, =1, s; = 10 v = 0. The construction
goes from right to left, starting with a word from SN V. Here it is 0.
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Theorem 29 If V = {vy,...,v,} is a uniquely decipherable code over
the alphabet B, then there is a prefix code W = {wj, ..., w,} over the
same alphabet B, such that |vi| = |wi],...,|va|] = |Wal.
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Optimality: average code-word length

In the following, we are considering only uniquely decipherable codes. In
addition, by Theorem before, we consider only prefix codes.

Let A be an alphabet connected with a source (A, P), where (as it is
defined) A= {as,...,a,}, and P ={p1,...,pa} so that:

a
plaj)=pi>0,i=1,...,3 Zp,-:l.
i=1
Let (A, P) be a source and V = f(A) a code over the alphabet B. The

value
a
ny = E pini,
i=1

where ny, ..., n, are code-word lengths, is said to be the average
code-word length for the code V.
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Optimality: average code-word length

Denote
« = inf Ay,
n inf Ay
where the infimum runs over all uniquely decipherable codes
V =f(A) C B*.
Every code V satisfying ny = n, is said to be optimal.
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Let A= {041,042,043,044} i P1 = 07457 P2 = 07 207 pP3 = 07 207 P4 = 07 15%
Two binary codes for this source, V and W, are given in the table.

ai | pi | v |ni(v)| w | ni(w)
a1 0,45 100 2 0 1
ap | 0,20 | 01 2 10 2
as|0,20|10] 2 [110] 3
a4 | 0,15 | 11 2 111 3

Here we have

Ay  =(0,45+0,20+0,20+0,15)-2 =2;
Aaw =0,45+2-0,20+3-0,20+3-0,15=1,90.
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Optimality: average code-word length

Theorem 30 Let (A, P), |A| = a be a give source and B (|B| = b) a
code alphabet. Then for every uniquely decipherable code
V = f(A) C B*, the following holds:

o H
n E—
V' = logh’

where H = —>"7_, p;log p; is the source entropy.
Theorem 31 Let (A, P) be a source and B (|B| = b) a code alphabet.
Then there is a prefix code V = f(A) C B* satisfying

ny < A +1
n — .
v log b
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1 1 1
A={on,...,07}, pL=p2= 5, P3=Pa=P5= 3, P6 = P71 = -
If B=1{0,1}, and
V = {00,01,100, 101,110, 1110, 1111},

then log b = log,2 =1 and

H

—— = H="nhy =2,625.
log b RS

For a binary coded alphabet of 7 letters this is the smallest possible
average code-word length, and it is actually reached, since all probabilities
are suitable powers of 2. Obviously, V is an optimal code.

130/189



Necessary conditions for optimal coding

Theorem 32 Let (A,P), A= {aq,...,ap} be a source and
V = f(A) C B*, (|B| = b) an optimal code. Then

pi > pj implies n; < nj, i #j, i,j€{1,...,a}.

Theorem 33 Let V = f(A) be an optimal binary code for the source
(A,P), A={ai,...,a,}. Suppose (without loss of generality) that

pL=p2=> "2 Pa-12 Pa-

Then the code-words f(a,—1) and f(a,) have the same length.
Theorem 34 For a given source (A, P), A={a1,...,aa}, p1 > -+ > pa,
there is an optimal binary prefix code f(A), such that the code-words
f(aa—1) 1 f(ay,) differ precisely in the last digit.
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Shannon-Fano code

We start with a source (A, p), A={aa,...,aa}, pr > -+ > pa. (Letters
are ordered according to non-increasing probabilities).

Determine i, 1 < < a, so that p; +--- + p; and pj4+1 + - -- + p, are
approximately equal numbers.

To each letter of the set {aq,...,a;} we associate digit 0, and to each
letter from {ajt1,...,a,} digit 1.

We repeat the procedure separately for each of the sets

{a1,..., i}, {aj+1,... , a5} (dividing each of them into two, with
respect to probability approximately equal subsets, associating to each,
respectively, digits 0 and 1).

This procedure is repeated up to one-element subsets.

The code word associated to each o from A, consists of digits associated
to « in every step.
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Shannon-Fano code is determined for the source (A, P), where
A={a1,az,03,04, a5, a6, a7}

and p(ay) = 0,27; p(az) = 0,21; p(az) = 0,15; p(es) = 0,15;
p(Oé5) =0,12; p(aﬁ) =0, 06; ,D(Oq) =0,04.

aj | pi vi = f(oy) | nj
ar 0,27 ([0] 00 2
as | 0,21 1 01 2
asz | 0,15 0 i 100 3
as [ 0,15 | 1 101 3
as | 0,12 1 0 110 3
as | 0,06 0] 1110 |4
az | 0,04 1] 1111 |4
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Observe that

H H
—— — —— — H.
logb log2
Therefore we have
H = -0,27log0,27 —0,21l0og0,21 —2-0,15log0,15 — 0,12log 0,12

—0,0610g 0,06 — 0,04 log 0,04 = 2,6002.

A = 2-(0,27+0,21) +3(0,15 + 0,15 + 0,12) + 4(0, 06 + 0,04) = 2, 62
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Optimal code (Huffman’s algorithm)

Theorem 35 Let V = f(A) = {vi,...,va} be optimal binary code for
the source (A, P), |Al =a, P={p1,...,pa}. If pj = qo + g1, where

pPL= P22 2 Pj-1 =P == Pa=qo= 41
Then, the code

Vi=f(A)={v1,...,vj_1, Vjt1,. .., Va, vjO, v;1}
is optimal for the source (A’, P’), where |A'| = a+ 1 and

P/ - {pla .. ‘7pj*17pj+17 .. -aPaaCIO,Ch}-

(by v;0 and v;1 we denote concatenation of digits {0,1} to the word v;).
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a) Construction of the optimal (binary) code, according to Huffman’s

algorithm:
Let (A, P) be a source with A = {a1,...,as} and

P =0,35;0,25;0,15;0,15;0,10}.

A P A ‘ p’ A ‘ p Al ‘ p
a1 | 0,35 a1 | 0,35 P 0345 0,40 P 012 0,60
as | 0,25 (%) 0,25 o1 0,35 ags | 0,40
asz | 0,15 P s 0,25 fe%) 0,25

ag | 0,15 az | 0,15

as | 0,10
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A ‘ f},(AW) A ‘ f2(A//) A fl(A/) A V = f(A)
ap | 0 N azgs | 1 N a1 | 00 a1 | 00
Q345 1 a1 00 (67%) 01 (6%) 01
ap |01 aus | 10 az | 11
a3 11 (67} 100
as | 101

137/189



b) Simplified method for constructing the optimal code (also by Huffman’s

algorithm): :

A P A/ P/ A// ‘P// A/// ‘P/// Aiv ‘Piv

a1 0,20 (051 0,20 |-> Q45 0,23 |-> Q367 0,37 ’-> a2 0,40 |->
az | 0,20 a2 0,20 a1 0,20 Q45 0,23 azer | 0,37 | O
asz | 0,19 a3 0,19 a2 0.20 a1 020 | 0 ous 023 | 1
as | 012 »  aer | 018 a3 0,19 a2 020 |1

as | 0,11 Q4 012 | 0 a7 | 0,18 | 1

a | 009 |0 as |011 |1

ar | 0,09 |1 -
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The code V:
A |V

a1 |10

(%) 11

a3 | 000
ag | 010
as | 011
as | 0010
a7 0011

According to Theorem, V is optimal binary code for the source (A, P).
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Block-codes: general

A={ai,...,a,} source alphabet

B ={01,...,0p} code alphabet (b is a code base) .

Each 1 — 1 mapping f : A — B”, for some n € N, is a coding of alphabet
A with a fixed (n) code-word length.

The set V = f(A) C B" is a block-code, n is its length, and if

|B| = b =2, the code is said to be binary. Equivalently, a subset V' from
B" is a block-code of cardinality a, over the alphabet B.

Theorem 36 A block-code V C B", |B| = b, b,n € N, of cardinality

a € N exists if and only if

S logs a .
~ logy b

In particular, if b = 2, the above inequality has a form

n > log, a.
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For encoding digits 0,1,2,...,9 by a binary code, by the above
inequality it is necessary for the code-length to be at least 4, since

n > log, 10 ~ 3, 2.

digit | BCD code | Gray's | code plus 3 | Gray-Stibitz | Aiken's

code code code
0 0000 0000 0011 0010 0000
1 0001 0001 0100 0110 0001
2 0010 0011 0101 0111 0010
3 0011 0010 0110 0101 0011
4 0100 0110 0111 0100 0100
5 0101 0111 1000 1100 1011
6 0110 0101 1001 1101 1100
7 0111 0100 1010 1111 1101
8 1000 1100 1011 1110 1110
9 1001 1101 1100 1010 1111
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Algebraic structures over the set {0,1}"

The set {0,1} is ordered by relation < in the usual way: 0 < 1. The set
{0,1}" of all ordered n-tuples of elements 0 i 1 is ordered componentwise:

(a1,00,...,an) < (B1,02,...,0n) akoa; < Giforalli=1,... n.

On the set {0, 1} we consider binary operations " &" and "-", given by the
tables:

@01 -0 1
ojo1 0[0 0
110 1]01
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Algebraic structures over the set {0,1}"

Theorem 37 The structure ({0,1},,-) is a field.

The ({0,1},,-) is denoted by GF(2) (Galois-field )
Define a binary operation ”@®” on {0,1}", for n € N. If
x,y €{0,1}" (x = (x1,...,%n), ¥ = (V1,---,¥n)), we define

X@y = (Xl @)’L--wxn@)’n)v

where on the right side & denotes the first operation in GF(2).
Theorem 38 ({0,1}",®) is an Abelian group.

Define now the mapping {0,1} x {0,1}" — {0,1}", denoted by ”-”:
if a€ {0,1} and x = (x1,..., %) € {0,1}", then

a-x:=(a-xi,...,a:xp),
where on the right ”-” denotes the second operation in GF(2).
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Algebraic structures over the set {0,1}"

By this definition, we have:
for a € {0,1} and x € {0,1}",

(0,...,0), for a=0
a-x=
X, for a=1.

Theorem 39 Abelian group ({0,1}", @) is a vector space over the field
GF(2) (denoted here by S7).

Clearly, S7) is an n—dimensional vector space, its base being e.g.,
{@1,,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1)}.

The weight of a vector x € {0,1}", x = (xi,...,Xn), denoted by ||x||, is

defined by:
Ixll =D xi
i=1

where on the right we have the sum of the numbers 0,1 as integers.
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Algebraic structures over the set {0,1}"

The Hamming distance, d(x, y) of vectors x and y from {0,1}" is
defined by

d(x,y) =[xyl
Obviously, if x = (x1,...,%n), ¥ = (v1,-..,¥n) then

d(va) = Z Xi Dy -
i=1

Observe the following: The weight of a vector is the number of its
non-zero coordinates, and the Hamming distance between x and y is equal
to the number of coordinates on which these vectors differ.
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Algebraic structures over the set {0,1}"

The following is straightforward.

If x iy are from {0,1}", then

1) ||x|]| = 0 if and only if x = (0,...,0);

2) Ixeyll < lixIl + liyll-

As a consequence, we have: for x,y, z from {0,1}",
a) d(x,y) =0 if and only if x = y;

b) d(x,y) = d(y,x);

c) d(x,y) < d(x,z) + d(z,y).
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Algebraic structures over the set {0,1}"

Theorem 40 The ordered pair ({0,1}", d) is a metric space, where
d:{0,1}" x {0,1}" — Ny

is a mapping defined by the Hamming distance.

Metric space ({0,1}", d) has a simple geometric interpretation:
Elements of the set {0,1}" are considered to be vertices of
n-dimensional unit square in R”. Then d(x, y) is the minimal number
of edges connecting vertices x and y.
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(a) The vector space [5 consists of vectors (0,0,0,0), (0,0,0,1),...,
(1,1,1,1), the cardinality of the space being 16. Here we have, e.g.,

, etc.

(b) Hamming distance: if x = 11101011, y = 10101010, then d(x, y) = 2,
since x @ y = 01000001, and [|[x® y||=1+1=2.
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Decoding; errors

For a code V' C {0,1}"” we define the code distance, denoted by d(V),
with
d(V):= i d
( ) u;évr,nul,r\l/GV (U, V)7
where d(u, v) is the Hamming distance between u i v.
Suppose we are using a code V C {0,1}" to prepare messages which are
sent through (BSC), whose matrix is

_ 1
ﬂ:[l € € :|,0§6<2

€ 1—c¢

1
(we assume that the probability of an error, (€), is less than 5).
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Decoding; errors

Passing through the channel, a word x € {0,1}" is transformed into
y €{0,1}" where y = x @ e. The vector e = e;...e, € {0,1}" is an
error vector.

X=X{...Xp —> channel — y=x0Qe
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Decoding; errors

We have e; = 0 with probability 1 — € (in which case the i-th coordinate is
not changed), and e; = 1 with probability € (there was an error on i—th
coordinate: 0 — 1 or 1 — 0).

If y differs from x in s (0 < s < n) coordinates, we say that y is obtained
from x due to s errors (it happens precisely when |e|| = s).

Observe that the Hamming distance of the word x and another word
obtained due to s errors is precisely s.

Suppose we are given a code V C {0,1}" which is used to prepare and
send messages through BSC. Each mapping f of the set {0,1}"” onto V is
a decoding of words from {0,1}".

The kernel of the function f induces a partition of the set {0,1}” into
(disjoint) classes f=*(v), v € V.
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Decoding; errors

The following proposition enable a general decoding procedure.
Theorem 41 Let BSC be given by the matrix

1—c¢ € 1
I'I—[ c 1_€:|,0<€<2,

and let V C {0,1}" be a code. Then for all u,v € V and x € {0,1}",
we have

p(x|u) > p(x|v) if and only d(u,x) < d(v, x).
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a) Code distance of the whole set {0,1}"” equals 1 (e.g., d(x,y) =1,
where x = (0,...,0), y =(1,0,...,0)).

b) For the code V = {0101, 1010,1100,0011,1111}, we have d(V) = 2,
since e.g., d(x,y) = 2, where x = 1111, and y = 1100. This is the
minimal distance between two distinct code-words in V.

Errors: If x = 101101, then the word y = 111101 is obtained from x due
to one error, and z = 000011 due to four errors.
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Correcting and detecting errors

Let V C {0,1}" be a block-code. For v € V and 0 <s < n, let
Zs(v) ={x|xe€{0,1}" and d(v,x)<s}.

Zs(v) is obviously the set of all words from {0,1}" which can be obtained
from v due to at most s errors. In the metric space ({0,1}",d) Zs(v) is a
sphere whose center is v and radius s.

&) .
Y
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Correcting and detecting errors

Detecting errors is not so restrictive as correcting them. Namely, detecting
errors means that we know that the received message differs from the sent
one, but we do not know which digits are changed during transmission.
The precise definition follows.
A code V C {0,1}" detects s errors (0 < s < n) if for each v € V the
following holds:

If x € Zs(v), then x & V \ {v}.

Theorem 42 a) A code V C {0,1}" corrects s errors if and only if
d(V) > 2s;
b) A code V C {0,1}" detects s errors if and only if

d(V)>s.
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Correcting and detecting errors

Channels satisfying the following are frequently in use:

On the word whose length is n at most s (0 < s < n) errors are possible.
It means that the set of error vectors is of the form:

{e| e€{0,1}" and |e| < s}.
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The block-code V = {00000000,00011111,11111000,11100111} corrects
at most two errors, since d(V/) = 5. For example, the word 01011011
should be decoded as its nearest (in the sense of Hamming distance)
code-word 00011111, from which it was created due to two errors.

The same code detects at most four errors. For example, the word
00111100 (in a channel with at most four errors on a code-word) could be
decoded as any of the following two 11111000,00011111, since it differs
from each of these in three digits.

157/189



Linear codes

A code V' C {0,1}" is said to be linear (n, k)-code (0 < k < n) if the set
of its vectors form a k-dimensional subspace of the vector space

S5 = ({0,1}", ®) over the field GF(2).

Theorem 43 A code V C {0,1}" is linear if and only if the set of its
vectors is closed under the operation @ of vector addition.

Theorem 44 The code distance d(V) of a linear code V is equal to the
minimal weight of its non-zero vectors.
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Linear codes

The number of elements of an (n, k)-code V is equal to the number of
linear combinations of k arbitrary linearly independent vectors from V/,
with coefficients from the set {0, 1}. Therefore, we have the following.
Theorem 45 Linear (n, k)-code has 2 elements.
A k x n matrix G, whose rows are vectors forming a basis of a linear
(n, k)-code V, is said to be a generating matrix of V.
Scalar product of vectors x = x1 -+ Xn, ¥y = y1--¥n, X,y € {0,1}", is
defined by

Xoy i =X1y1 DD Xn¥Yn,
where ”@®” and ”-” are operations in the field GF(2).
Obviously, 70" is a mapping ({0,1}")? — {0,1}, associating to a pair of
vectors from S an element of the field GF(2)).
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Linear codes

The following is fulfilled: for all x,y,z € {0,1}"

xoy=yox and

xo(y®z)=(xoy)®(xoz).

Vectors x and y are said to be orthogonal if x oy = 0.

The set of vectors from {0,1}" orthogonal to all vectors in a linear

(n, k)-code V/, is called the orthogonal complement of a code V and
usually is denoted by V.

Theorem 46 If V is a linear (n, k)-code, then V is a linear

(n, n — k)-code.

If V is the orthogonal complement of a code V, then clearly V is the
orthogonal complement of V.

A generating matrix F (of the type (n — k) x n) of V is a control
matrix of a code V.
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Linear codes

The name of the control matrix is connected with its basic property:
F-x=0 ifand only if x € V.

Therefore, using the matrix F it is possible to check whether a vector does
or does not belong to V' (more details in the following).
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(a) The rows of the matrix

001110
G=|010001
110010

are linearly independent, hence this is a generating matrix of a linear
(6,3)-code. We determine its elements:
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If x; = 001110, x, = 010001 and x3 = 110010 (vector from the basis),
then V consists of the following vectors:

0-x1 @ 0-xo @& 0-x3 = 000000
1-x3 & 0-xo & 0-x3 = 001110 = xq
0-x1 & 1:-xo & 0-x3 = 010001 = x
O0-x1 & 0-x0 & 1l-x3 = 110010 = x3
0-x1 @ 1-x0 & 1l-x3 = 100011
1-x3 & 0-x & 1-x3 = 111100
1-xq & 1-x0 & 0-x3 = 011111
1-x1 & 1-x0 & 1-x3 = 101101
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Hence
vV = {000000,001110,010001, 110010, 100011,111100,011111,101101}.

Code distance d(V) is 2, since, e.g., ||x2| = 2.
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(b) If x=110101, y = 101000 and z = 101011, then

xoy =1, xoz=yoz=0, which means that the vectors x and z, as
well as y and z are orthogonal. Each of these is also orthogonal to itself,
since xox =yoy =2zoz=0. This is a property of each vector having
even weight.
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(c) Let
1 01010
F=]101 10 01
0 00111
be a control matrix of a linear (6,3) - code V. We are determining vectors
of V using the equation
F-x=0, ie.,
e
101010 2 0
011001 ol =10
000111 * 0
X5
| X6
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Thereby we have
x1®x3®dxs = 0
X2 © x3 D X6
X DxsDxe = 0

Il
o

X1 = X3@ X5
X2 = X3DXp -
X4 = X5 D Xp
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Free variables are x3, x5 i xg. The code V is given in the sequel.

X1 X2 X3 X4 X5 Xp
vv 0 0O 0 0 O O
vw 0 1 0 1 0 1
vz 1 0 0 1 1 O
vw 1 1 1 0 0 O
vw 1 1 0 0 1 1
vvw 1 0 1 1 0 1
v 0 1 1 1 1 O
vw 0 0 1 0 1 1

We associate arbitrary digits to free variables (0,0,0 to 1,1,1), and the
values of the remaining coordinates are determined from the condition (1).
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Linear codes: decoding

Let V be a linear (n, k) - code. For an arbitrary vector x € {0,1}",

suppose
xeV ={xov|veV}

By the definition of a linear code V' as a subspace of the vector space S7,
it follows that (V/, @) is an Abelian subgroup of the group ({0,1}", ®).
Therefore, x @ V is a coset of (the subgroup) V in {0,1}".

Theorem 47 a) Every vector y from {0,1}" belongs to a coset of V;
b) x and y belong to V if and only if x® y € V;

c)xdV=yadV, forevery y e xad V,

d) each coset of V has exactly 2% elements.

Theorem 48 The family {x ® V | x € {0,1}"} is a partition of the set

{0,117,
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Linear codes: decoding

Suppose that a vector y € {0,1}" appeared at the output of BSC. By the
above comments, it belongs to the coset y @ V. If the word v € V was
sent into the channel, then for an error vector e we have:

e=ydbveya\V.

Hence, the coset y & V consists of all possible error vectors for the word y.
Therefore, the vector y is decoded by v =y @ e, where e is the vector
with the minimal weight in the coset y ® V.

If this vector e with a minimal weight is unique, then it is called the
leader of the corresponding coset. If in the coset y @ V there are several
vectors with a minimal weight, then the decoding is not unique, each of
this vectors plays the role of e.

Starting with a code V usually the table of cosets x ® V, x € {0,1}" is
constructed.
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Linear codes: decoding

The following algorithm is used to determine the coset y & V in such a
table.

If F is the control matrix of an (n, k)-code V, and y € {0,1}" (vector
appearing at the channel output), then the vector

c=F-y

is called the corrector of y. Obviously, ¢ € {0,1}"% and the corrector is
a zero vector if and only if y € V. Else, if y = v ® e, v € V, we have

c=F-y=F(vdbe)=F-vdF-e=F-e.
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Linear codes: decoding

By the above, the following holds:

Two vectors belong to the same coset of V' if and only if they have the
same corrector c.

Therefore, each ¢ € {0,1}" determines precisely one coset of V and
vice versa. Therefore, correctors are placed in headings of the class tables.
The algorithm follows. If y € {0,1}" (the vector at the channel output),
then:

| the corrector c is determined from the equation F - y = c;
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Linear codes: decoding

By the above, the following holds:

Two vectors belong to the same coset of V' if and only if they have the
same corrector c.

Therefore, each ¢ € {0,1}" determines precisely one coset of V and
vice versa. Therefore, correctors are placed in headings of the class tables.
The algorithm follows. If y € {0,1}" (the vector at the channel output),
then:

| the corrector c is determined from the equation F - y = c;

Il in the coset determined by c (i.e., in y @ V) the vector e with the
minimal weight (the leader) is identified;
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Linear codes: decoding

By the above, the following holds:

Two vectors belong to the same coset of V' if and only if they have the
same corrector c.

Therefore, each ¢ € {0,1}" determines precisely one coset of V and
vice versa. Therefore, correctors are placed in headings of the class tables.
The algorithm follows. If y € {0,1}" (the vector at the channel output),
then:

| the corrector c is determined from the equation F - y = c;

Il in the coset determined by c (i.e., in y @ V) the vector e with the
minimal weight (the leader) is identified;

Il y is decoded by v =y & e.
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(a) Let F = {

0101 :
101 1 be a control matrix of the (4,2) - code
vV = {0000,1101, 1010, 011

1}.

’ H leader ‘ H corrector ‘

0000 | 1101 1010 0111 | 00
cosets || 1000 | 0101 0010 1111 || 01
of V' || 0100 | 1001 1110 0011 || 10
0001 | 1100 1011 0110 || 11

Partition of the set {0,1}* into cosets x @ V, x € {0,1}* is given in the
table, correctors are indicated.
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Code distance of V is 2, hence detecting one error over a code-word is
possible, but not (precise) correction of each. Every class (cosset) in the
table (except the second) contains the leader, i.e., a single vector with the
minimal weight. Therefore, some single errors can be corrected. As an
example, suppose y = 1110 appeared at the channel output. Then

(9}
Il
~'-~I
<
|
| — |
=)
O =
=)
= =
—_
(e I R e
|
| — |
O =
—_

and the leader of this class is e = 0100.
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The vector y is decoded by
y @ e = 1110 ¢ 0100 = 1010.

If the vector 1111 is received, then the corresponding corrector is ¢ = 01,
and in his class there are two vectors with the minimal weight: 1000 and
0010. Therefore, the vector 1111 can be decoded as 0111, but also as
1101.
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(b) Let F (given in the sequel) be a control matrix of a linear code V:

O O O =
O O = O
O = O O
= O O O
O R = =
=

Suppose that we have to decode the message 001111100101101010.
From the equation F - x = 0, the code V can be determined:

Vv = {000000, 101101, 111010,010111}

178/189



Partition of {0,1}° into cosets x @ V is given in the table. These classes
can be determined by the definition: if e.g., x = 100000, then

x ¢ 000000 = 100000, x ¢ 101101 = 001101, x ¢ 111010 = 011010 i

x @ 010111 = 110111. This is the ninth row of the table, corresponding to
the corrector 1000. Another way to construct the table is to calculate the
corrector ¢ for each x, using the equation ¢ = F - x, and then by the same
equation, one should determine other vectors from the coset.

179/189



The code distance of this code is 4, this code can correct one and detect
three errors. If we are decoding words 001111, 100101 and 101010 (since
the above message consists of these words), then we have correctors
respectively, 0110, 0010 and 0100. In the corresponding cosets, vectors
with minimal weight are: 011000 (100010), 001000, 010000. Therefore,
the given message is decoded by 010111101101111010 or by
101101101101111010.
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coset x®V corrector
000000 101101 111010 010111 0000
000100 101001 111110 010011 0001
001000 100101 110010 011111 0010
001100 100001 110110 011011 0011
010000 111101 101010 000111 0100
010100 111001 101110 000011 0101
011000 110101 100010 001111 0110
011100 110001 100110 001011 0111
100000 001101 011010 110111 1000
100100 001001 011110 110011 1001
101000 000101 010010 111111 1010
000001 101100 111011 o010110 1011
001010 100111 110000 011101 1100
110100 011001 001110 100011 1101
000010 101111 111000 010101 1110
000110 101011 111100 010001 1111
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Hamming codes: Detecting an error

For n € N, let
Vi(n) = {x € {0,1}" | ||x|| = 0 (mod 2)}.

These are obviously vectors of the length n, with an even weight. Viy(n) is
a linear code. Indeed, if x and y are from V(n), then ||x|| = 0 (mod2),
lly|l =0 (mod2), and ||[x @ y|| = 0 (mod?2), i.e., x &y € Vy(n). Further
on, d(Vy(n)) = 2, by the definition. This code detects an error (by
checking the parity of words), and its cardinality is 2"~ . Therefore a
generating matrix is

100 ... 01

010 ... 01

000 ... 11

of the type (n — 1) x n, and a control matrix is
F=[11---1]
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The code Vy(4) is given in the table. A single error on a code-word is
detected as a word with odd weight.

0000 0110
0011 1010
0101 1100
1001 1111
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Hamming codes: Correcting an error

Let n=2°"—1, s=2,3,... and let F be a control matrix of the type

s X (2° — 1), whose columns are binary coded numbers 1,2,...,2° — 1,
with s digits.
000 --- 11
000 --- 11
F=| cococcococoooc
011 - 11
101 - 01

For s =2 and s = 3, we have:

0001111
[(1)(1)1] and 0110011
1010101
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Hamming codes: Correcting an error

The code Wy(n), having F as a control matrix, has dimension
n—s=2"—1—s. We show that d(Wy(n)) > 3. Let

x € Wy(n), x = (x1,...,x) and let x # 0. Clearly, F - x = 0, which is, if
Fi,..., F, are columns in F, equivalent with

x1FL® xR ® xpFr=0

(0 is the corresponding zero-vector).
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Hamming codes: Correcting an error

Since F; #0, i=1,...,n, it follows that ||x|| # 1. In addition, |x|| # 2,
since in case x; = x; = 1 (for i # j), and all other coordinates being
zeroes, we would have F; @ F; =0, i.e., F; = F;, which is not true.
Therefore, the smallest non-zero weight of a vector in Wy (n) is greater
than 2, hence the code corrects one error.

The algorithm for correcting errors follows from the definition of its control
matrix F. Let x from Wpy(n) be changed on the i-th coordinate, so that y
appeared at the output:

y=x®e=(xt,...,xn) ®(0,...,1,...,0) =(x1,...,x DL, ..., xn)
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Hamming codes: Correcting an error

Then
F-y=F(x®e)=F -x®&F-e=0®F =F;.

In other words, the vector F -y is a binary denoted coordinate on which
the error appeared. If it is a zero vector, then obviously there was no error.
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The code Wy(7) s given by the table

0000000 1110000
1101001 0011001
0101010 1011010
1000011 0110011
1001100 0111100
0100101 1010101
1100110 0010110
0001111 1111111

which could be easily obtained by solving the equation
F-x=0,

where
0001111
F=|0110011

1010101
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For example, if y = 0110010 is a received vector, then

N HE
Fy=0-|0|®1-|1 |®1|1|®0]|0|®0 |0 |®l1-|]1|0]| 1
1 0 1 0 1 0 1

1

=111,

1

and since 111 is a binary coded number 7, the error is at the seventh
digit. It follows that x = 0110011 and this is the vector by which y should
be decoded.
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