MATHEMATICS BEHIND CHIP

Branimir Šešelja Department for Mathematics and Informatics Faculty of Sciences, University of Novi Sad

Teaching material

B. Šešelja MATHEMATICS BEHIND CHIP

イヨト・イヨト

Chip from the outside

B. Šešelja MATHEMATICS BEHIND CHIP

Chip from the outside

B. Šešelja MATHEMATICS BEHIND CHIP

Chip from the outside

B. Šešelja MATHEMATICS BEHIND CHIP

E

Digital technology

Zeroes and ones

$\ldots 011101010 \ldots \ \textbf{?} \rightarrow \textbf{?} \ \ldots 011000110 \ldots$

B. Šešelja MATHEMATICS BEHIND CHIP

- * @ * * 注 * * 注 * - 注

SQ C

Sets

Power set

B. Šešelja MATHEMATICS BEHIND CHIP

.

副 と 《 臣 と 《 臣 と

E

Sets

Power set

A - a set

B. Šešelja MATHEMATICS BEHIND CHIP

◆ 注 ▶ < 注 ▶ ...</p>

Э

DQC

Sets

Power set

$$A$$
 - a set $\mathcal{P}(A) := \{X \mid X \subseteq A\}$

B. Šešelja MATHEMATICS BEHIND CHIP

.

副 と 《 臣 と 《 臣 と

E

Sets

A - a set $\mathcal{P}(A) := \{X \mid X \subseteq A\}$ $\mathcal{P}(A)$ is a collection of all subsets in A, it is called a **power set** of the set A.

(1日) (日) (日)

E

Sets

A - a set

$$\mathcal{P}(A) := \{X \mid X \subseteq A\}$$

 $\mathcal{P}(A)$ is a collection of all subsets in A, it is called a **power** set of the set A.

Relationship \subseteq is said to be **inclusion**:

- * @ * * 注 * * 注 * - 注

Sets

A - a set

$$\mathcal{P}(A) := \{X \mid X \subseteq A\}$$

 $\mathcal{P}(A)$ is a collection of all subsets in A, it is called a **power** set of the set A.

Relationship \subseteq is said to be **inclusion**:

$$X\subseteq Y \Longleftrightarrow (orall x)(x\in X\Rightarrow x\in Y)$$

- * @ * * 注 * * 注 * - 注

Examples

B. Šešelja MATHEMATICS BEHIND CHIP

・ロト ・四ト ・ヨト ・ヨト

Ð,

► *A* = {*a*, *b*}

・ロト ・四ト ・ヨト ・ヨト

Ð,

•
$$A = \{a, b\}$$

 $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

B. Šešelja MATHEMATICS BEHIND CHIP

・ロト ・四ト ・ヨト ・ヨト

Ð,

On a power set $\mathcal{P}(A)$ we define set operations:

▲御★ ▲注★ ▲注★

3

DQC

On a power set $\mathcal{P}(A)$ we define set operations: For $X, Y \subseteq A$

- (日) (注) (注) (注) (注)

DQC

On a power set $\mathcal{P}(A)$ we define set operations: For $X, Y \subseteq A$ $X \cap Y := \{x \mid x \in X \land x \in Y\}$ - intersection

SQ C

On a power set $\mathcal{P}(A)$ we define set operations: For $X, Y \subseteq A$ $X \cap Y := \{x \mid x \in X \land x \in Y\}$ - intersection $X \cup Y := \{x \mid x \in X \lor x \in Y\}$ - union

B. Šešelja MATHEMATICS BEHIND CHIP

- * @ * * 注 * * 注 * - 注

Sar

On a power set $\mathcal{P}(A)$ we define set operations: For $X, Y \subseteq A$ $X \cap Y := \{x \mid x \in X \land x \in Y\}$ - intersection $X \cup Y := \{x \mid x \in X \lor x \in Y\}$ - union $C_A(X) := A \setminus X = \{x \mid x \in A \land x \notin X\}$ - complement of Xwith respect to A

★ (B) ★ (E) ★ (E) ★ (E)

San

On a power set $\mathcal{P}(A)$ we define set operations: For $X, Y \subseteq A$ $X \cap Y := \{x \mid x \in X \land x \in Y\}$ - intersection $X \cup Y := \{x \mid x \in X \lor x \in Y\}$ - union $C_A(X) := A \setminus X = \{x \mid x \in A \land x \notin X\}$ - complement of Xwith respect to AIt is also denoted by $C_A(X) = \overline{X}$.

- ◆ □ ▶ ◆ 三 ▶ ◆ □ ● ○ ○ ○ ○

Properties of set operations

 $(\mathcal{P}(A), \cap, \cup, \bar{}, \emptyset, A, \subseteq)$

B. Šešelja MATHEMATICS BEHIND CHIP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Properties of set operations

 $(\mathcal{P}(A), \cap, \cup, \bar{}, \emptyset, A, \subseteq)$ Let $X, Y, Z \subseteq A$. Then:

▲□→ ▲ 国 → ▲ 国 →

Properties of set operations

$$(\mathcal{P}(A), \cap, \cup, \bar{}, \emptyset, A, \subseteq)$$

Let $X, Y, Z \subseteq A$. Then:

$$X \cap Y = Y \cap X, \quad X \cup Y = Y \cup X$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Properties of set operations

 $(\mathcal{P}(A), \cap, \cup, \bar{}, \emptyset, A, \subseteq)$ Let $X, Y, Z \subseteq A$. Then:

$$X \cap Y = Y \cap X, \quad X \cup Y = Y \cup X$$
$$X \cap (Y \cap Z) = (X \cap Y) \cap Z,$$
$$X \cup (Y \cup Z) = (X \cup Y) \cup Z$$

▲□→ ▲注→ ▲注→

Properties of set operations

 $(\mathcal{P}(A), \cap, \cup, \bar{}, \emptyset, A, \subseteq)$ Let $X, Y, Z \subseteq A$. Then:

$$X \cap Y = Y \cap X, \quad X \cup Y = Y \cup X$$

$$X \cap (Y \cap Z) = (X \cap Y) \cap Z,$$

$$X \cup (Y \cup Z) = (X \cup Y) \cup Z$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

▲□→ ▲ 国 → ▲ 国 →

Properties of set operations

 $(\mathcal{P}(A), \cap, \cup, \bar{}, \emptyset, A, \subseteq)$ Let $X, Y, Z \subseteq A$. Then:

$$X \cap Y = Y \cap X, \quad X \cup Y = Y \cup X$$

$$X \cap (Y \cap Z) = (X \cap Y) \cap Z,$$

$$X \cup (Y \cup Z) = (X \cup Y) \cup Z$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$X \cap X = X, \quad X \cup X = X$$

▲□→ ▲ 国 → ▲ 国 →

Properties of set operations

 $(\mathcal{P}(A), \cap, \cup, \bar{}, \emptyset, A, \subseteq)$ Let $X, Y, Z \subseteq A$. Then:

$$X \cap Y = Y \cap X, \quad X \cup Y = Y \cup X$$

$$X \cap (Y \cap Z) = (X \cap Y) \cap Z,$$

$$X \cup (Y \cup Z) = (X \cup Y) \cup Z$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$X \cap X = X, \quad X \cup X = X$$

$$X \cap \overline{X} = \emptyset, \quad X \cup \overline{X} = A$$

(ロ) (四) (E) (E) (E) (E)

Properties of set operations

 $(\mathcal{P}(A), \cap, \cup, \bar{}, \emptyset, A, \subseteq)$ Let $X, Y, Z \subseteq A$. Then:

$$X \cap Y = Y \cap X, \quad X \cup Y = Y \cup X$$

$$X \cap (Y \cap Z) = (X \cap Y) \cap Z,$$

$$X \cup (Y \cup Z) = (X \cup Y) \cup Z$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$X \cap X = X, \quad X \cup X = X$$

$$X \cap \overline{X} = \emptyset, \quad X \cup \overline{X} = A$$

$$X \cap A = X, \quad X \cup \emptyset = X.$$

(本部) (本語) (本語) (語)

Diagram

A power set can be represented by a diagram:

- (日) (注) (注) (注) (注)

Diagram

A power set can be represented by a diagram:

Diagram

 $(P(\{a, b, c, d\}), \subseteq)$

B. Šešelja MATHEMATICS BEHIND CHIP

▲御★ ▲注★ ▲注★

E

Boolean algebra

Axioms

Boolean algebra

B. Šešelja MATHEMATICS BEHIND CHIP

- 10

◆ 注 ▶ < 注 ▶ ...</p>

Э

DQC
Axioms

Boolean algebra

 $\mathcal{B} = (B, \wedge, \lor, \, ', 0, 1),$

B. Šešelja MATHEMATICS BEHIND CHIP

Boolean algebra

 $\mathcal{B} = (B, \wedge, \vee, \,', 0, 1),$

B - a nonempty set, \land , \lor - binary operations, ' - a unary operation, 0 and 1 - constants, and the following axioms hold:

回 と く ヨ と く ヨ と

Э

 $\mathcal{B} = (B, \wedge, \vee, \prime, 0, 1),$ B - a nonempty set, \wedge , \vee - binary operations, ' - a unary operation, 0 and 1 - constants, and the following axioms hold: b1: $x \wedge y = y \wedge x$ (commutativity laws) b2: $x \lor y = y \lor x$; b3: $x \land (y \lor z) = (x \land y) \lor (x \land z)$ b4: $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ (distributivity laws) b5: $x \land 1 = x$ (properties of 0 and 1) b6: $x \lor 0 = x$ b7: $x \wedge x' = 0$ (properties of the complement operation) b8: $x \lor x' = 1$ b9: $0 \neq 1$.

(本部) (本語) (本語) (一語)

na C

Two-element Boolean algebra

Operations

 $\mathcal{B}_2 := (\{0,1\}, \wedge, \lor, \ ', 0, 1)$ - a two-element Boolean algebra

Two-element Boolean algebra Operations

 $\mathcal{B}_2:=\bigl(\{0,1\},\wedge,\vee,\ '\ ,0,1\bigr)\,$ - a two-element Boolean algebra

▲御▶ ▲注▶ ▲注▶ - 注

na Cr

Two-element Boolean algebra Operations

 $\mathcal{B}_2:=\bigl(\{0,1\},\wedge,\vee,\ '\ ,0,1\bigr)\,$ - a two-element Boolean algebra

0

回り くほり くほり ……ほ

Sar

Another example

Example with positive integers

B. Šešelja MATHEMATICS BEHIND CHIP

回 と く ヨ と く ヨ と

Another example

Example with positive integers

Terms

Language of Boolean algebras

B. Šešelja MATHEMATICS BEHIND CHIP

副 🕨 🔺 国 🕨 🔺 国 🕨 👘

E

Boolean terms - definition:

回 と く ヨ と く ヨ と

E

Boolean terms - definition:

▶ variables *x*, *y*, *z*, . . . and constants 0, 1 are Boolean terms;

▲御▶ ▲注▶ ▲注▶ 三注

Boolean terms - definition:

- ▶ variables *x*, *y*, *z*, . . . and constants 0, 1 are Boolean terms;
- if A and B are Boolean terms, then also (A ∧ B), (A ∨ B) are
 (A') Boolean terms;

(1日) (日) (日) (日) (日)

Boolean terms - definition:

- ▶ variables *x*, *y*, *z*, ... and constants 0, 1 are Boolean terms;
- if A and B are Boolean terms, then also (A ∧ B), (A ∨ B) are
 (A') Boolean terms;
- Boolean terms are obtained only by the finite number of applications of the previous two rules.

(1) 日本 日本 (1) 日本

B. Šešelja MATHEMATICS BEHIND CHIP

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Ð,

Examples

• $x' \wedge (y \vee z')'$

▲御★ ▲注★ ▲注★

E

Examples

- $x' \wedge (y \vee z')'$
- ► $(x \lor (y \land x'))' \lor z$

B. Šešelja MATHEMATICS BEHIND CHIP

- (日) - (日) - (日) - 日

Examples

- $x' \wedge (y \vee z')'$
- ► $(x \lor (y \land x'))' \lor z$
- ► $1 \land x'$

B. Šešelja MATHEMATICS BEHIND CHIP

(4回) (1日) (日) 日

Examples

- $x' \wedge (y \vee z')'$
- $(x \lor (y \land x'))' \lor z$
- ► $1 \land x'$
- $((u' \lor v)' \land (u' \land v')) \lor v$

□ > → ● > → ● > → ●

Examples

- $x' \wedge (y \vee z')'$
- $(x \lor (y \land x'))' \lor z$
- ► $1 \wedge x'$
- $((u' \lor v)' \land (u' \land v')) \lor v$
- $\blacktriangleright (x_1 \wedge x'_2 \wedge x'_4) \vee (x'_2 \wedge x_3 \wedge x_5) \vee (x_1 \wedge x'_6)$

回 と く ヨ と く ヨ と

From sets to zeroes and ones:

B. Šešelja MATHEMATICS BEHIND CHIP

▲圖 → ▲ 国 → ▲ 国 →

Э

From sets to zeroes and ones:

Characteristic function

回 と く ヨ と く ヨ と

E

From sets to zeroes and ones:

Characteristic function A - set, $B \subseteq A$

- (回) (注) (注) (注) (三)

Sar

From sets to zeroes and ones:

Characteristic function $A - \text{set}, B \subseteq A$ $\mathcal{K}_B : A \rightarrow \{0, 1\}$

□ > → ● > → ● > → ●

Sar

From sets to zeroes and ones:

Characteristic function $A - \text{set}, B \subseteq A$ $\mathcal{K}_B : A \to \{0, 1\}$ Za $x \in A$ $\mathcal{K}_B(x) := \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{if } x \notin B. \end{cases}$

- (回) - (回) - (回) - (回)

From sets to zeroes and ones:

Characteristic function $A - \text{set}, B \subseteq A$ $\mathcal{K}_B : A \to \{0, 1\}$ Za $x \in A$ $\mathcal{K}_B(x) := \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{if } x \notin B. \end{cases}$

To each subset of A there corresponds a characteristic function and vice versa.

B. Šešelja MATHEMATICS BEHIND CHIP

- (回) (注) (注) (注) (三)

Example

Example

B. Šešelja MATHEMATICS BEHIND CHIP

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

E

Example

Example $A = \{a, b, c, d\}$ $B = \{a, c\}$

- 10

★ E ► ★ E ► ...

E

Example

Example $A = \{a, b, c, d\} \quad B = \{a, c\}$ $\mathcal{K}_B = \begin{pmatrix} a & b & c & d \\ 1 & 0 & 1 & 0 \end{pmatrix}$

B. Šešelja MATHEMATICS BEHIND CHIP

(E) < E) </p>

Example

Example $A = \{a, b, c, d\} \quad B = \{a, c\}$ $\mathcal{K}_B = \begin{pmatrix} a & b & c & d \\ 1 & 0 & 1 & 0 \end{pmatrix}$ $\mathcal{K}_{\emptyset} = \begin{pmatrix} a & b & c & d \\ 0 & 0 & 0 & 0 \end{pmatrix}$

B. Šešelja MATHEMATICS BEHIND CHIP

- ★ 臣 ▶ - - 臣

Example

Example $A = \{a, b, c, d\} \quad B = \{a, c\}$ $\mathcal{K}_B = \begin{pmatrix} a & b & c & d \\ 1 & 0 & 1 & 0 \end{pmatrix}$ $\mathcal{K}_{\emptyset} = \begin{pmatrix} a & b & c & d \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\mathcal{K}_A = \begin{pmatrix} a & b & c & d \\ 1 & 1 & 1 & 1 \end{pmatrix}$

< 注→ 注

Three-element set

 $\mathcal{P}(\{a, b, c\})$

프 > 프

Four-element set

 $\{\mathcal{K}_X \mid X \subseteq \{a, b, c, d\}\}$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

E

DQC

Number of elements

There are as many characteristic functions on a set of n elements as there are subsets: 2^n .

(신문) (신문)

Number of elements

There are as many characteristic functions on a set of n elements as there are subsets: 2^n .

n = 1	0	1	2 ¹	- =	2
i = 1	U	1	2	_	~

- < 注 ▶ → 注 ▶ -

Number of elements

There are as many characteristic functions on a set of n elements as there are subsets: 2^n .

n = 1		0	1		$2^1 =$	2
<i>n</i> = 2	0 0	0 1	1 1	0 1	2 ² =	4

(신문) (신문)

Number of elements

There are as many characteristic functions on a set of n elements as there are subsets: 2^n .

n = 1	0 1	$2^1 = 2$
<i>n</i> = 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^2 = 4$
<i>n</i> = 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 ³ = 8

B. Šešelja MATHEMATICS BEHIND CHIP
Boolean algebra of characteristic functions

Number of elements

B. Šešelja MATHEMATICS BEHIND CHIP

▲御★ ▲注★ ▲注★

3

Boolean algebra of characteristic functions

Number of elements

n = 4

0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0

프 + - 프 +

E

Boolean algebra of characteristic functions

Number of elements

n = 4

0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0

 $2^4 = 16$

프 + - 프 +

E

Words made of zeros and ones are used in digital technology.

- (注) - (注) - (注) - (二) - (-)

→ E → < E → </p>

Example of binary code:

▲ 臣 ▶ → 臣 ▶ …

Example of binary code:

(신문) (신문) 문

San

Example of binary code:

Single words are **code words**.

★ E → < E → </p>

San

Counting with code words is performed coordinatewise, using two-element Boolean-algebra operations:

 $\mathcal{B}_2 = (\{0,1\}, \wedge, \vee, \ ' \ , 0, 1).$

Counting with code words is performed coordinatewise, using two-element Boolean-algebra operations:

$$\mathcal{B}_2 = (\{0,1\}, \wedge, \vee, \ ', 0, 1).$$

回 ト イヨト イヨト

E

Sar

Counting

Example

B. Šešelja MATHEMATICS BEHIND CHIP

Codes

Counting

Example $\varphi: \{0,1\}^3 \to \{0,1\}$ $y \mid z \mid \varphi(x, y, z)$ Χ

문어 제품에 다

E

Codes

Counting

Example $\varphi: \{0,1\}^3 \to \{0,1\}$ $y \mid z \parallel \varphi(x, y, z)$ X 0 0 0 1 1 0

 $f(x, y, z) = (x' \land y' \land z') \lor (x' \land y \land z) \lor (x \land y' \land z).$

(< E) < E) </p>

Э

Logical circuits

Logical circuits

B. Šešelja MATHEMATICS BEHIND CHIP

副 と 《 臣 と 《 臣 と

Э

Logical circuits

AND-gate:

- 注入 - 注入 -

E

DQC

B. Šešelja MATHEMATICS BEHIND CHIP

Logical circuits

B. Šešelja MATHEMATICS BEHIND CHIP

- (日) - (日) - (日) - 日

Logical circuits

Inverter or NOT-gate:

▲□→ ▲ 国 → ▲ 国 →

E

Logical circuits

Inverter or NOT-gate:

B. Šešelja MATHEMATICS BEHIND CHIP

(1日) (日) (日)

3

Logical circuits

Definition of a logical circuit:

B. Šešelja MATHEMATICS BEHIND CHIP

(4回) (1日) (日) 三日

Logical circuits

Definition of a logical circuit:

Gates (AND, OR and NOT) are logical circuits;

B. Šešelja MATHEMATICS BEHIND CHIP

□→ < E → < E → E</p>

Sar

Definition of a logical circuit:

- ► Gates (AND, OR and NOT) are logical circuits;
- ► If A, A₁, A₂,..., A_n are logical circuits, then also objects connected by gates as presented are logical circuits.

回 と く ヨ と く ヨ と

Definition of a logical circuit:

- ► Gates (AND, OR and NOT) are logical circuits;
- ► If A, A₁, A₂,..., A_n are logical circuits, then also objects connected by gates as presented are logical circuits.

 Logical circuits are obtained only by a finite number of application of the previous two rules.

(1日) (日) (日) (日) (日)

Logical circuits

Example

B. Šešelja MATHEMATICS BEHIND CHIP

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

E

Logical circuits

Example

 $(x \lor (y' \land z))'$

B. Šešelja MATHEMATICS BEHIND CHIP

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

E

Logical circuits

Example

B. Šešelja MATHEMATICS BEHIND CHIP

문어 귀 문어

E

Logical circuits

Half adder and adder

B. Šešelja MATHEMATICS BEHIND CHIP

□ > 《注 > 《注 > _

E

Half adder and adder

Addition of numbers represented in binary system; two single-digit binary numbers:

回 と く ヨ と く ヨ と

Half adder and adder

Addition of numbers represented in binary system; two single-digit binary numbers:

Half adder and adder

Addition of numbers represented in binary system; two single-digit binary numbers:

 $x \oplus y = (x \lor y) \land (x \land y)'$ and $r = x \land y$.

B. Šešelja MATHEMATICS BEHIND CHIP

- (日) - (日) - (日) - 日

San

Logical circuits

Half adder

B. Šešelja MATHEMATICS BEHIND CHIP

・ロト ・四ト ・ヨト ・ヨト

3

Logical circuits

Half adder

$$x \oplus y = (x \lor y) \land (x \land y)'$$
 $r = x \land y$

B. Šešelja MATHEMATICS BEHIND CHIP

・ロト ・四ト ・ヨト ・ヨト

3

Logical circuits

Half adder

$$x \oplus y = (x \lor y) \land (x \land y)' \quad r = x \land y$$

B. Šešelja MATHEMATICS BEHIND CHIP

문어 소문어

E

Logical circuits

Addition of numbers represented in binary system; three single-digit binary numbers::

□→ < E → < E → E</p>

Sar

Logical circuits

Addition of numbers represented in binary system; three single-digit binary numbers::

X	y y	z	$x \oplus y \oplus z$	R
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

→ □ → → 注 → → 注

Logical circuits

Addition of numbers represented in binary system; three single-digit binary numbers::

Sar

Logical circuits

Addition of numbers represented in binary system; three single-digit binary numbers::

□ > 《注 > 《注 > _
Logical circuits

Addition of numbers represented in binary system; three single-digit binary numbers::

回り くほり くほり ……ほ

Sar

Logical circuits

Addition of numbers represented in binary system; three single-digit binary numbers::

Logical circuits

Adder

B. Šešelja MATHEMATICS BEHIND CHIP

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○

3

Logical circuits

Adder

$$r = x \land y$$
 $R = r \lor (z \land (x \oplus y))$

B. Šešelja MATHEMATICS BEHIND CHIP

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○

3

Logical circuits

Adder

B. Šešelja MATHEMATICS BEHIND CHIP

- 10-

- 4

문어 귀 문어

Logical circuits

Adder

Logical circuits

Example

B. Šešelja MATHEMATICS BEHIND CHIP

▲御▶ ▲理▶ ▲理▶

Ð,

Logical circuits

Example

Construction of a logical circuit for the addition of three two-digit binary numbers.

B. Šešelja MATHEMATICS BEHIND CHIP

□ > 《注》《注》

1

Sar

Logical circuits

Example

Construction of a logical circuit for the addition of three two-digit binary numbers.

		a_1	a_0
		b_1	b_0
	\oplus	c_1	<i>c</i> ₀
d ₃	d_2	d_1	d_0

▲御▶ ▲注▶ ▲注▶ 三注

Sar

Logical circuits

Example

Construction of a logical circuit for the addition of three two-digit binary numbers.

		a_1	a_0
		b_1	b_0
	Φ	C1	Co
	\mathbb{U}	Ч	<u> </u>

Algorithm for the addition:

$$\begin{array}{rcl} a_0 \oplus b_0 \oplus c_0 &=& d_0 & (\text{transfer } r_0) \\ r_0 \oplus a_1 \oplus b_1 &=& d_1' & (\text{transfer } r_1) \\ d_1' \oplus c_1 &=& d_1 & (\text{transfer } r_2) \\ r_1 \oplus r_2 &=& d_2 & (\text{transfer } d_3) \end{array}$$

E

Logical circuits

B. Šešelja MATHEMATICS BEHIND CHIP

イロト イヨト イヨト イヨト

E

Back to beginning

Chip from the inside

B. Šešelja MATHEMATICS BEHIND CHIP

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○

E

Back to beginning

Chip from the inside

Back to beginning

Chip from the inside

B. Šešelja MATHEMATICS BEHIND CHIP

E

How to speed up chip performance?

Finite fields

B. Šešelja MATHEMATICS BEHIND CHIP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

How to speed up chip performance?

Finite fields

Field GF(2)

B. Šešelja MATHEMATICS BEHIND CHIP

- (回) (注) (注) (注) (三)

DQC

Field GF(2) Galois Field (E. Galois, French mathematician, 1811-1832.)

B. Šešelja MATHEMATICS BEHIND CHIP

白 ト イヨ ト イヨ ト

Field GF(2) Galois Field (E. Galois, French mathematician, 1811-1832.)

Operation \oplus and \cdot on the set $\{0,1\}$, represented by tables:

回 と く ヨ と く ヨ と

Field GF(2)

Galois Field (E. Galois, French mathematician, 1811-1832.)

Operation $\,\oplus\,$ and $\,\cdot\,$ on the set $\{0,1\},$ represented by tables:

\oplus	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

回 と く ヨ と く ヨ と 二 ヨ

San

Field GF(2)

Galois Field (E. Galois, French mathematician, 1811-1832.)

Operation $\,\oplus\,$ and $\,\cdot\,$ on the set $\{0,1\},$ represented by tables:

\oplus	0	1		•	0	1
0	0	1	-	0	0	0
1	1	0		1	0	1

The structure $(\{0,1\},\oplus,\cdot)$ is a field.

Field GF(2)

Galois Field (E. Galois, French mathematician, 1811-1832.)

Operation $\,\oplus\,$ and $\,\cdot\,$ on the set $\{0,1\},$ represented by tables:

\oplus	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

The structure $(\{0,1\},\oplus,\cdot)$ is a field.

When applied, field operations are performed faster then Boolean algebra operations.

- (回) (注) (注) (注) (三)