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B. Šešelja MATHEMATICS BEHIND CHIP



Chip from the outside

��
��
��
��
��
��
��

��
��
��
��
��
��
��

?
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Digital technology
Zeroes and ones

. . . 011101010 . . . ? → ? . . . 011000110 . . .
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And now mathematics...
Sets

Power set

A - a set

P(A) := {X | X ⊆ A}
P(A) is a collection of all subsets in A, it is called a power
set of the set A.

Relationship ⊆ is said to be inclusion:

X ⊆ Y ⇐⇒ (∀x)(x ∈ X ⇒ x ∈ Y )
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Power set
Examples

Examples

I A = {a, b}
P(A) = {∅, {a}, {b}, {a, b}}

I B = {a, b, c}
P(B) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

I P(∅) =?

P(∅) = {∅}
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Power set
Operations

On a power set P(A) we define set operations:

For X ,Y ⊆ A

X ∩ Y := {x | x ∈ X ∧ x ∈ Y } - intersection

X ∪ Y := {x | x ∈ X ∨ x ∈ Y } - union

CA(X ) := A \ X = {x | x ∈ A ∧ x 6∈ X} - complement of X
with respect to A

It is also denoted by CA(X ) = X .
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Power set
Properties of set operations

(P(A),∩,∪, ¯, ∅,A,⊆)

Let X ,Y ,Z ⊆ A. Then:

X ∩ Y = Y ∩ X , X ∪ Y = Y ∪ X

X ∩ (Y ∩ Z ) = (X ∩ Y ) ∩ Z ,
X ∪ (Y ∪ Z ) = (X ∪ Y ) ∪ Z

X ∩ (Y ∪ Z ) = (X ∩ Y ) ∪ (X ∩ Z )
X ∪ (Y ∩ Z ) = (X ∪ Y ) ∩ (X ∪ Z )

X ∩ X = X , X ∪ X = X

X ∩ X = ∅, X ∪ X = A

X ∩ A = X , X ∪ ∅ = X .
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B. Šešelja MATHEMATICS BEHIND CHIP



Power set
Properties of set operations

(P(A),∩,∪, ¯, ∅,A,⊆)

Let X ,Y ,Z ⊆ A. Then:

X ∩ Y = Y ∩ X , X ∪ Y = Y ∪ X

X ∩ (Y ∩ Z ) = (X ∩ Y ) ∩ Z ,
X ∪ (Y ∪ Z ) = (X ∪ Y ) ∪ Z

X ∩ (Y ∪ Z ) = (X ∩ Y ) ∪ (X ∩ Z )
X ∪ (Y ∩ Z ) = (X ∪ Y ) ∩ (X ∪ Z )

X ∩ X = X , X ∪ X = X

X ∩ X = ∅, X ∪ X = A

X ∩ A = X , X ∪ ∅ = X .
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Power set
Diagram

A power set can be represented by a diagram:
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Power set
Diagram
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Boolean algebra
Axioms

Boolean algebra

B = (B,∧,∨, ′, 0, 1),

B - a nonempty set, ∧ , ∨ - binary operations, ′ - a unary
operation, 0 and 1 - constants, and the following axioms hold:

b1: x ∧ y = y ∧ x
b2: x ∨ y = y ∨ x ;

(commutativity laws)

b3: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
b4: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

(distributivity laws)

b5: x ∧ 1 = x
b6: x ∨ 0 = x

(properties of 0 and 1)

b7: x ∧ x ′ = 0
b8: x ∨ x ′ = 1

(properties of the complement operation)

b9: 0 6= 1.
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Two-element Boolean algebra
Operations

B2 := ({0, 1},∧,∨, ′ , 0, 1) - a two-element Boolean algebra

′

1 0
0 1

∧ 1 0

1 1 0
0 0 0

∨ 1 0

1 1 1
0 1 0

c
c

1

0
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Boolean algebra
Another example

Example with positive integers
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(D(30), gcd , lcm, 30/x , 1, 30)
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Boolean algebra
Terms

Language of Boolean algebras

Boolean terms - definition:

I variables x , y , z , . . . and constants 0, 1 are Boolean terms;

I if A and B are Boolean terms, then also (A ∧ B), (A ∨ B) are
(A′) Boolean terms;

I Boolean terms are obtained only by the finite number of
applications of the previous two rules.
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Boolean terms
Examples

Examples

I x ′ ∧ (y ∨ z ′)′

I (x ∨ (y ∧ x ′))′ ∨ z

I 1 ∧ x ′

I ((u′ ∨ v)′ ∧ (u′ ∧ v ′)) ∨ v

I (x1 ∧ x ′
2 ∧ x ′

4) ∨ (x ′
2 ∧ x3 ∧ x5) ∨ (x1 ∧ x ′

6)
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Boolean algebra
Characteristic function

From sets to zeroes and ones:

Characteristic function
A - set, B ⊆ A

KB : A→ {0, 1}
Za x ∈ A

KB(x) :=

{
1 if x ∈ B
0 if x 6∈ B.

�

To each subset of A there corresponds a characteristic function
and vice versa.
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B. Šešelja MATHEMATICS BEHIND CHIP



Boolean algebra
Characteristic function

From sets to zeroes and ones:

Characteristic function
A - set, B ⊆ A

KB : A→ {0, 1}
Za x ∈ A

KB(x) :=

{
1 if x ∈ B
0 if x 6∈ B.

�

To each subset of A there corresponds a characteristic function
and vice versa.
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Characteristic function
Example

Example

A = {a, b, c, d} B = {a, c}

KB =

(
a b c d
1 0 1 0

)
K∅ =

(
a b c d
0 0 0 0

)
KA =

(
a b c d
1 1 1 1

)
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Boolean algebra of characteristic functions
Three-element set
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Boolean algebra of characteristic functions
Four-element set
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B. Šešelja MATHEMATICS BEHIND CHIP



Boolean algebra of characteristic functions
Number of elements

�

There are as many characteristic functions on a set of n elements
as there are subsets: 2n.

n = 1 0 1 21 = 2

n = 2
0 0 1 0
0 1 1 1

22 = 4

n = 3

0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 1 1 0
0 1 1 1 1 1

23 = 8
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Boolean algebra of characteristic functions
Number of elements

n = 4

0 0 0 0 1 1 0 0
0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0
0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 0
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Boolean algebra of characteristic functions
Codes

Words made of zeros and ones are used in digital technology.

These are binary codes.

Example of binary code:

0 0 0 0 1 1 0 0
0 0 1 1 1 1 1 1

Single words are code words.
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Codes
Counting

Counting with code words is performed coordinatewise, using
two-element Boolean-algebra operations:

B2 = ({0, 1},∧,∨, ′ , 0, 1).

′

1 0
0 1

∧ 1 0

1 1 0
0 0 0

∨ 1 0

1 1 1
0 1 0
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Codes
Counting

Example

ϕ : {0, 1}3 → {0, 1}
x y z ϕ(x , y , z)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

f (x , y , z) = (x ′ ∧ y ′ ∧ z ′) ∨ (x ′ ∧ y ∧ z) ∨ (x ∧ y ′ ∧ z).
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Boolean functions
Logical circuits

Logical circuits

AND-gate: �
�

ccc cx1

x2·
·

xn

x1 ∧ x2 ∧ . . . ∧ xn
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Boolean functions
Logical circuits

OR-gate: �
�

ccc cx1

x2·
·

xn

x1 ∨ x2 ∨ · · · ∨ xn

Inverter or NOT-gate:

c cx x ′
@
@

�
�

�
��x x ′
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Boolean functions
Logical circuits

Definition of a logical circuit:

I Gates (AND, OR and NOT) are logical circuits;

I If A, A1, A2,. . . , An are logical circuits, then also objects
connected by gates as presented are logical circuits.

�

 A

A1

··
An

�



A1

··
An

�
�
@
@

I Logical circuits are obtained only by a finite number of
application of the previous two rules.
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B. Šešelja MATHEMATICS BEHIND CHIP



Boolean functions
Logical circuits

Definition of a logical circuit:

I Gates (AND, OR and NOT) are logical circuits;

I If A, A1, A2,. . . , An are logical circuits, then also objects
connected by gates as presented are logical circuits.

�

 A

A1

··
An

�



A1

··
An

�
�
@
@

I Logical circuits are obtained only by a finite number of
application of the previous two rules.
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Boolean functions
Logical circuits

Example

(x ∨ (y ′ ∧ z))′

c 
!
 
!

ccc
x

y

z

(x ∨ (y ′ ∧ z))′
HH
��

HH
��
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Boolean functions
Logical circuits

Half adder and adder

Addition of numbers represented in binary system;
two single-digit binary numbers:

x y x ⊕ y r

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

x ⊕ y = (x ∨ y) ∧ (x ∧ y)′ and r = x ∧ y .
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Boolean functions
Logical circuits

Half adder

x ⊕ y = (x ∨ y) ∧ (x ∧ y)′ r = x ∧ y

cc
 
! 
!

 
!c
c

x

y x ⊕ y

r = x ∧ y

cc ccPS
x

y

x ⊕ y

r

qq
q
��
HH
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Boolean functions
Logical circuits

Addition of numbers represented in binary system;
three single-digit binary numbers::

x y z x ⊕ y ⊕ z R

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

R = (x ′ ∧ y ∧ z) ∨ (x ∧ y ′ ∧ z) ∨ (x ∧ y ∧ z ′) ∨ (x ∧ y ∧ z) =

(x ∧ y) ∨ (z ∧ ((x ′ ∧ y) ∨ (x ∧ y ′)))

(x ′ ∧ y) ∨ (x ∧ y ′) = x ⊕ y ; x ∧ y = r ,

R = r ∨ (z ∧ (x ⊕ y)); r - reminder, transfer.
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Boolean functions
Logical circuits

Adder

r = x ∧ y R = r ∨ (z ∧ (x ⊕ y))

ccc
c
cPS PS

x

y

z

x ⊕ y ⊕ z

R

x ⊕ y

r (x ⊕ y) ∧ z
�



ccc
cc x ⊕ y ⊕ z

R

x

y

z

S
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Boolean functions
Logical circuits

Example

Construction of a logical circuit for the addition of three
two-digit binary numbers.

a1 a0
b1 b0

⊕ c1 c0
d3 d2 d1 d0

Algorithm for the addition:

a0 ⊕ b0 ⊕ c0 = d0 (transfer r0)

r0 ⊕ a1 ⊕ b1 = d
′
1 (transfer r1)

d
′
1 ⊕ c1 = d1 (transfer r2)

r1 ⊕ r2 = d2 (transfer d3)
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Boolean functions
Logical circuits
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Back to beginning
Chip from the inside

B. Šešelja MATHEMATICS BEHIND CHIP



Back to beginning
Chip from the inside ��

��
��
��
��
��
��

��
��
��
��
��
��
��

� 
g

� �g
� �g � 
g
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How to speed up chip performance?
Finite fields
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How to speed up chip performance?
Finite fields

Field GF(2)

Galois Field (E. Galois, French mathematician, 1811-1832.)

Operation ⊕ and · on the set {0, 1}, represented by tables:

⊕ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

�

The structure ({0, 1},⊕, ·) is a field.

When applied, field operations are performed faster then
Boolean algebra operations.
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B. Šešelja MATHEMATICS BEHIND CHIP



How to speed up chip performance?
Finite fields

Field GF(2)
Galois Field (E. Galois, French mathematician, 1811-1832.)

Operation ⊕ and · on the set {0, 1}, represented by tables:

⊕ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

�

The structure ({0, 1},⊕, ·) is a field.

When applied, field operations are performed faster then
Boolean algebra operations.
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