

No room here for free will!

. . .

Lots of natural and human events seem to be very unpredictable!!

Clouds and the weather (after a week)

Or

does it arise naturally from Newton's laws???

The Problem A set X and a function $f: X \to X$ are given. For $x \in X$ define the orbit starting from x: $\{x, f(x), f(f(x)), f(f(f(x))), \ldots\} = \{x, f(x), f^2(x), f^3(x), \ldots\}$ Notation: $f^k = f \circ f \circ f \circ \ldots \circ f$ (k-times) $f^0(x) = x, f^{k+1}(x) = f(f^k(x))$ for $k \in \{0, 1, 2, \ldots\}$ Determine the long time behaviour of the sequences $(f^k(x))_{k=0}^{\infty}$ $f^k(x) \to ?$ as $k \to \infty$ How does the answer depend on $x \in X$ and on $f: X \to X$?

28

Periodic points:

For the repeating sequence $x = 0.\overline{a_0 a_1 \dots a_{n-1}}$ we have $t^n(x) = x$, that is, x is n-periodic

For given $x\in\mathbb{T}$ and $\epsilon>0$ there is a periodic point $y\in\mathbb{T}$ with $|x-y|<\epsilon$

```
\begin{aligned} x &= 0.a_0 a_1 a_2 \dots a_n a_{n+1} \dots \\ y &= 0.\overline{a_0 a_1 a_2 \dots a_n} \\ \text{choose } n \text{ so that } \frac{1}{2^n} < \epsilon \end{aligned}
```

Sensitive dependence on initial conditions
$x = 0.a_0a_1a_2\ldots a_na_{n+1}\ldots \in \mathbb{T}$ given
Choose $y = 0.a_0a_1a_2\ldots a_nb_1b_2b_3\ldots$
so that $b_1 = 1 - a_{n+1}, b_j = a_{n+j}$ for $j \ge 2$
Distance of x and y is $<\frac{1}{2^n}$
Distance between
$t^{n}(x) = 0.a_{n+1}a_{n+2}a_{n+3}\dots$ and $t^{n}(y) = 0.b_{1}b_{2}b_{3}\dots$
is $\frac{1}{2}$
This property is called sensitive dependence on initial conditions
(butterfly effect)
The dynamics is unpredictible:
a small change in the initial point results a large change
after a certain number of iterations

100

A dense orbit

 $\begin{aligned} x_* &= 0.01\ 00\ 01\ 10\ 11\ 000\ 001\ 010\ 011\ 100\ 101\ 110\ 111\ \dots \\ \text{Given } y \in \mathbb{T} \text{ and } \epsilon > 0 \text{ there is } k \text{ so that } \\ t^k(x_*) \text{ and } y \text{ are } \epsilon\text{-close} \end{aligned}$

A map $f: X \to X$ is called chaotic if (i) the periodic points of f are dense in X; (ii) there is a sensitive dependence on initial conditions; (iii) for all open sets U, V in X there are k and $x \in U$ with $f^k(x) \in V$ The existence of a dense orbit implies (iii).

AIM: to get analogous result for $Q(x) = 4x(1-x), x \in [0,1]$
Project S^1 onto $[-1, 1]$:
$h: S^1 \to [-1, 1]$ $h(\phi) = \cos \phi$
Then we have
$h \circ g(\phi) = h(2\phi) = \cos(2\phi) = 2(\cos\phi)^2 - 1 = 2[h(\phi)]^2 - 1$
This motivates
$P: [-1,1] \to [-1,1]$ $P(x) = 2x^2 - 1$
There is a semi-conjugacy between g and P :
$P \circ h = h \circ g$ S^1
$h(\phi)$
[-1,1]

Results for

 $Q_{\lambda}(x) = \lambda x(1-x), \quad 0 \le x \le 1, \quad 0 < \lambda \le 4$

 $\omega_{\lambda}(x)$ is the set of accumulation points of $(Q_{\lambda}^{n}(x))_{n=0}^{\infty}$ How does $\omega_{\lambda}(x)$ depend on x?

For each $\lambda \in (0, 4]$ there is a unique set $\Omega_{\lambda} \subset [0, 1]$ such that $\omega_{\lambda}(x) = \Omega_{\lambda}$ for almost all $x \in [0, 1]$.

Ω_λ can have the following structures:
(i) a periodic cycle;
(ii) an attracting Cantor set of zero Lebesgue measure;
(iii) a finite union of intervals.

All cases do appear.

Small perturbation of $\lambda = 4$ can lead to completely different asymptotics:

28

There is a sequence $(\lambda_n)_0^{\infty}$ with $\lambda_n \to 4$ so that Q_{λ_n} has an attracting *n*-cycle containing 1/2 and only one point in $(\frac{1}{2}, 1]$.