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Hypotheses for population regulation

» Populations are limited by density-independent
factors such as changes in theather

» Populations are limited by théwod supply.

* Populations regulate themselves through
mechanisms such é&sritoriality or cannibalism.

» Populations are regulated througimpetition
» Populations are regulated pyedators
» Populations are regulated pyirasites or diseases

If the Lord Almighty had consulted me

Before embarking on creation

| should have recommended something simpler.
Alphonso the Wise (1221-1284)
King of Castile and Leon (attributed)

Population Biology,
Ecological questions

Concepts and Models

Simulation Fitting
Appropriate model, Strict conditions,
many parameters few parameters

Topics:

I.  Logistic equation
one species populates alone the
living space (,Lebensraum”)

Il. Competition (Lotka-\Volterra
equation)
two species compete for the
common living space (food)

lll. Predator-Prey Interactions (Lotka-
\olterra Models)
One species is the exclusive food
the other species.
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l. Logistic equationrhe population does not grow to infinity

One species dominate the living space only and the equilibrium
population (carrying capacit) is determined by the conditions.
For separate generationthe relative increase of the population denislify
from generatiom to generationr(+1) is proportional to the actual
deviation of the population from the equilibrium vakie

Moo -, | Recursive

n

For not separate generatiptize logistic equation turns to differential

equation:
d_N =C [GK - N ) [N Differential
dt equation

The logistic equation can be integrated by separation of theblesi

How does the system approach the
equilibrium (if exists)?

N h
depending on the ratio
monotonously of C (rate constant) and
= decreasing K (carrying capacity):
172}
£
2 \ K
é / carrying
% oscillating capacity
=
2 monotonously
increasing Analogy in physics:
- damped oscillation
N 0

time t

1 N
CIK |K-N

where C:Kthe rate of the increaseNf<<K, C- (K-N) is the actual rate
K population in equilibrium
B constant of integration

t= +B

Homeworks

1) Growth cultures, chemostates, reactors

The equilibrium capacity of a bacterium growth
culture isK = 5- 1@ cells/ml. In the lag phase of the
growth (when the culture is dilute) the doublingei
(generation time) is

Ty = (In2)/(C-K) = 40 minutes.

How large will be the population density of thetauvé
after 2 hours if the initial population density
(concentration) is

a) 1-1G@cells/ml,
b) 1- 108 cells/mlI?
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2)Harvesting the species.
How many fish can be harvested without reducing the viability of th¢

population? (When the population level becomes too low, the population

will decline. This is thllee effec)
Hint:
Complete the simple logistic equation with a term that corsither
harvest:

d—N:CEIN(K—N)—H [N

dt
whereH is the rate of the harvest.
a) Find the non-zero equilibrium of this model, which will depend or
value ofH. What restriction o is necessary for this equilibrium to b
positive? Discuss biologically why this condition makes sens
b) What happens to the populatiorHiis larger than the value
determined in part a?

1%

Il. Lotka-Volterra Competition
»The dynamics of the two species:

Ki—-Ni(t) -a ENz(t)J
K1

L\th(t) = r1N1(t)(

AN (t Ko = No(t) — BN (t
2) = (o K= N2® =B ()
At Ky
wherea andBare the interspecificompetition coefficientsf the two species.
N,: population density of the first species
N,: population density of the second species
K,: carrying capacity of the living space for thesfispecies

K,: carrying capacity of the living space for the®t species
r,: growth rate of the first specieS(K,)

r,: growth rate of the second speci€s-Ky)
AN;: increase of the population density of the fipgtaes within timeit

AN,: increase of the population density of the secgpeties within timat

the

Growth curviof
photosynthetic bacteria

® plain
AHST 1M
X HgZ* 5 M
O Het 10 M

n(NiNg)

: o .= & The anaerobic growth curves were obtained
plotting the logarithm of the relative populatig
size, In (\/Np), against the time elapsed from

5 0o the light exposure. Growth rate)( lag phase
041 duration 4) and the asymptotic population siz

(K) were determined by fitting the modified
P » Gompertz equatioto growth curves

T
10 10+ 10?2 10° 10?

™1 (o)
o] IN(N/N,) = K- exp{-exp-e/K- (% - ) + 1]}
] whereN is the cell concentration at the tirhe
02 N, is the initial cell concentration arefthe
ol R Napier number) is the base of the natural

T T
10 10+ 102 10° 10

by

=

logarithm.

L] Con)

»Kinetics: Dynamics of the two populations between0 andt = 100 units.
One species outcompetes the other.

- View

® Time Series  ( Isocline Diagram

Legend @ Species 1 Species 2

Population
1000

800

600

N,(0) = 10,
.-f\\_ NZ(O) =20,

0 shsstsesaqess —
0 1 20 30 40 s0 60 70 80 o0 100 r,=0.9,

Generation r, = 0 5
27 VS
|-Species One "Species Two K _ 500
Population Density: 10 Population Density: 20 1~ ’
Carrying Capacity: 500 Carrying Capacity: 700 K2 - 700’
: o : & - 4=06
Exponential Growth Rate: 0.9 Exponential Growth Rate: 0.5 7
: G : &) . p=07

Competition Coefficient: 0.6 Competition Coefficient: 0.7
: ! 3 !
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Dynamics of competition: the outcome depends on the initial condifions . .. . .
Dynamics of competition with coexistence
r,=0.9r,=0.5,K, =500, K,=500,a=12,=1.1
400
500 RS
[ 350 ! B
400 } PPt [
et 300 | s
o |7 Y :
h 2 250
! 5 4 I
=l ‘ 8 200 |1 At the joint N,(0) = 10
oo i 5 ' equilibrium, the sum ~ N»(0) =20
F 150 i of the population sizes r1=0.9
0 — = - 100 of the two speciesis 2= 0-5
0o 20 40 L o 0 20 40 y 60 80 100 greater than 500! K; =500
. . o 50 K, =500
The only difference between the two figures is the initial camdit a=06
_ _ 0 1 i 1 1 J —
Ny(0) = 10 Ny(0) = 10 0 20 40 60 80 00 P07
N,0)=10 ——> N,(0) = 60
»>Equilibrium : neitherN;, norN, does change\(N; = AN, = 0)
Ki=Ny+a N, Ky=Ny+ B8N Homework
View
 Time Series ® Isociine Diagram The ecologist Slobodkin (1961, 1964) looked at competition betwegn a
o b_rqvx_/n hydrg(Hydra littoralis) and agreen hydra(ChIorohydre_l
1000 viridissimg in laboratory experiments. He was able to achieve
" Ky/la coexistence only by the process he caitedfaction,removing a
i Equilibrium in coexistencit is above fraction of the population of both species at regular intervals by
o e il e ety el ) removing part of the medium in which the animals were grown.
Legend
- e Demonstrate how this works by adding the termd\; and m-N, to the
Lotka-Volterra equations! Show that it is possible to havaistance
200 with proper choice of the the additional terms, even if the coexistenge
K impossible without the additional terms (i.e. one species always
% 200 400 t 600 800 1000 eliminates the other).
N1
jjtetios Gne |[Eaatnes ‘ AN(t) _ Kq— Ny(t) - INo(t) AN _ o Ka= N0 = AN
‘CrarmngCapaclly'.ﬁ[lI] s C'arlyln(:apacny: 700 . T_rlNl(t) T miN;| m =Nyl )[7Kz ] MmN,
anmpelilI%Cnefﬁl:iem: 0.6 Cnmpatitinnrc‘nafﬁciemf 0.7




lll. The Lotka-Volterra-Equations
for the Predator-Prey model

PRI Lynx canadensis .

Lepus americanus,
A

» CharacteristicsOne species (prey) is the exclusive food of
the other species (predator).

» Conditions

¢ The prey lives under unlimited (food) conditions (e.g. it is
grass-eating and the grass supply is inexhaustible),

¢ Theincrease of the predator population is determined
solely by the prey population,

e The rates of reproduction of both species are independgnt
on the age of the species,

¢« The number of captured prey is proportional to the
number of encounters between predators and preys.

Egy amerikai biztositasi igyntkség (Hudson Bay Company) a 19. szazadbardpal
prémkeresketk aggodalmainak eloszlatasara kezdte vizsgalni a kanadai hiuz

16D} populacidjanak évenkénti alakulasat.
Alfred J. Lotka (1925) és

140 ——HARE Vito Volterra (1926)
____LYH¥ egymastol fliggetlendl
120 javasoltak elképzelésiiket,
amelyre manapsdgtka-
100 Volterramodellként

(egyenletekként)
hivatkoznak.

Thousands g

60
One of the 40
best long-
term data se20
in ecology

- L5
1845 1855 1865 1875 1885 1895 1905 1915 1925 1935

N: actual population of the prey,

r,: rate of increase of the population of the prey,
P: actual population of the predator,

r,: rate of death of the predator

» If no predators are present, the population ofptiey increases exponentially:
AN(t) = r;N(1)-At.
(The capacity of the living space is extremely large for the prey.)
» If no preys are available, the population of thedator decreases exponentially:
AP(t) = —r,P(t)-At.
»The number of encounters within unit interval afidi (,bimolecular process”):
C,N-P,

where the constam, offers the magnitude of the chance that a predatimhes (kills
and eats) a prey.
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»Taking into account both species:
AN(t)/At = r,N(t) — C;N(t)-P(t)
AP(t)/At = —r,P(t) + C,N(t)-P(t)

where the constaldl, indicates in what extent (yield) the predator mé# (for
his own purposes, e.g. metabolism, sexual potegitial the captured prey.

» The Lotka-Volterra equations are coupled differ@reguations.
We have to check

- the existence of the solution,

- the unicity of the solution and

- the stability of the solution (e.g. what does tioése do?).

> It can be proven, that there are solutions but cgbe obtained by analytical
methods (in ,closed” forms).

»The solutions can be derived by approximateiferica) methods. The Lotka-
\olterradifferentialequation will be converted tlifferenceequation and starting from

timet = 0, we proceed witht steps and calculate the actual populatié(isandP(t).

PHASE TRAJECTORY

Lotka-Volterra ragadoz6-zsakmany

Closed phase

~ 5 trajectory.
5 20
8 15 +
3 10 ¢
& 51 N\ e
0 } } {
0 10 20 30
Populacié ( N)
The variable

Py=20,r,=0.1, C; =0.01; (hidden) parameter
No=20,r,=0.1,C,=0.01 is the time.

Lotka-Volterra ragadozé-zsakmany: id KINETICS

raiekiri

rajextona The observed

Phase-shifted oscillations ~ 0scillation is not a
unique feature of th

model.

1%
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The oscillation does not come
from the presence of the
Py=20,r,=0.1,C;=0.01; predator, the population of the
No=20,r,=0.1,C,=0.01 prey can oscillate even in the
absence of the predator and
vica cersa

Decreasing populations. Extinction of both predator and prey.

Lotka-Volterra ragadoz6-zsakmany: id 6
trajektoria
25
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P,=20,r, = 0.01,C, = 0.1;
Ny = 20,r,=0.1,C,= 0.01
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. I.
> Stable condition mearesjuilibrium if AN=AP = 0,then P=-1 gng N =—-2%.

1 2

Lotka-Volterra ragadoz6-zsakmany: id 6

trajektoria
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145
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193

P,=10,r, = 0.1,C, = 0.01;
N, = 10,r,=0.2,C, = 0.02

»Meaning of the two equations: KINETICS

« above predator populatiéh=r,/C, , the prey population decreases and
below predator populatidd = r,/C, , the prey population increases.

Lotka-Volterra ragadozé-zsakmany: id 6
trajektoéria

Lotka-Volterra ragadozé-zsakmany: id 6
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18 (1) 18 (t)

P,=30r,=0.1,C, = 0.01;
N, = 10,r,=0.2,C, = 0.02

P,=5, r,=0.1,C,=0.01;
N, = 10,r,=0.2,C, = 0.02

r,/C;=10

PHASES

The time is eliminated.

Lotka-Volterra ragadozé-zsakmany

T % T
- 25 -
g g
g g
g g
a g‘ a
0 5 10 15 20 25
Populacié ( N)
above
P,=30,r,=0.1,C, = 0.01;
N, = 10,r,=0.2,C, = 0.02
r,/C,=10

Lotka-Volterra ragadozé-zsakmany

Populécié ( N)
below
P,=5, r,=0.1,C,=0.01;
N, = 10,r,=0.2,C, = 0.02

»>Meaning of the two equations: KINETICS

« above the prey population bf=r,/C,, the predator population increases 4
below the prey population &f =r,/C,, the predator population idecreases.

Lotka-Volterra ragadozé-zsakmany: id 6 Lotka-Volterra ragadozé-zsakmany: id &
trajektoria trajektoria
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P,=10,r, = 0.1,C, = 0.01;
N,=30,r,=0.2,C,= 0.02

P,=10,r, = 0.1,C, = 0.01;
N,=5, r,=0.2,C,=0.02

r,/C,=10
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The phase diagrams are closed curves.

PHASE PLANE

Lotka-Volterra ragadozé-zsakmany Lotka-Volterra ragadozé-zsakmany

Populécid ( P)
8
Populécid ( P)

0 10 20 30 40 0 5 10
Populacioé ( N)

15 20
Populacié ( N)

P,= 10, r; = 0.1,C, = 0.01;

P,=10,r, = 0.1,C, = 0.01;
N, = 30,r,=0.2,C, = 0.02

N,=5, r,=0.2,C,=0.02

above r,/C,=10 below

Trajektories

to visualize the solutions of the Lotka-Volterra malel for
predator-prey: simulations in planes of time and plases

Many thanks to Ms

Kornélia Szebényi

student of biophysics who calculated the time and
phase trajectories with great diligence, patience and
expertise.
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P,=20,1,=0.1,C,=0.01;Ny= ,r,=0.2,C,=0.013
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Po=20,r,=0.1,C, = 0.01; Ny= ,1,=0.2, C, = 0.013
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.s0c . Classic laboratory experiment on predation (Huffak858) o0
Predator-pray system with spatial structure (the experimentalrsaive
. -]
g 2000 1 consisted of 120 oranges). [ tao O
¢ P [ . s 9 H
& L L] E
w1500 T @ prey L Teo 3
k] &
E L] e W
2 oo 1 Y 140 T
H s B ), A4 2
8 o /4 ¢ ) g
u o sac o s g o g ® W Sob 1tz §
*o.gg dpredator 4 ,”‘ ke °
clree el S beee® B0060l,

TSOOTHE 89 826 9415 10M8 10424 11414 1245 12427 16 A6 2/E8
date (1955-1956)

Huffaker (1958) reared two species of mites to demonstrate these coupllediass of predator and prey densities in the laboratoryngJ&yphlodromus occidentaliss the
predator and the six-spotted miéofetranychus sexmaculajuss the prey, Huffaker of oranges (fed on by the pre|
and rubber balls on trays. The oranges were partially abveite wax to control the amount of feeding area availabte. &exmaculatysnd dispersed among the rubber
balls. The results of one of the many permutations of hisriexets are graphed below. Note that the prey populationssirethe left vertical axis and the predator
population is on the right vertical axis, and that the sazfi¢he two are different.

Interpretation: It is apparent from the graph that both populations showed aybéavior, and that the predator population generally trabegiiaks in the prey
population. However, there is some information about this expetithat we need to consider before concluding that theimsqnal results truly support the predictions
made by the Lotka-Volterra model. To achieve the results gdapére, Huffaker added to the i resources fdf.

oranges), were spread further apart than in previous expésimehich meant that food resources Tooccidentaligi.e., E. sexmaculatysvere also spread further apart.
Additionally, the oranges were partially isolated with vawebarriers, but the prey's ability to disperse was aitl by the presence of upright sticks from which they c
ride air currents to other parts of the environment. leratfords, predator and prey were not encountering one anottierigrin the environment.

Conclusions:A good model must be simple enough to be mathematically trectalilcomplex enough to represent a system realisticallfisRéa often sacrificed for
simplicity, and one of the shortcomings of the Lotka-Volteraaiehis its reliance on unrealistic assumptions. For examysig,populations are limited by food resources
not just by predation, and no predator can consume infinite tiesu prey. Many other examples of cyclical relationshipsen predator and prey populations have bd
demonstrated in the laboratory or observed in nature, buhaajehese are better fit by models incorporating teatsrepresent carrying capacity (the maximum populd

size that a given environment can support) for the prey istic functional (how a predator's as prey densities change) for
predator on, and in the envi :

Homework

A farmer discovered a pest eating his crops. After sprayingawith
pesticide, the farmer found to his great surprise that the levied gfetst
increased! How can it occur?

Hint:

Assume that the pest was being eaten by a predator and that thelgq
affected both the predator and the pest. Also assume that the inters
between the pest and the predator can be described by a continuou
Lotka-Volterra model.

pStici
cti
s time

2011.05.19.

Predation in natural syste

One of the difficulties of relating the theory to interactibesveen
predator and pray in natural systems is finding a relatively icattdin
space) system where thereiisingle predator feeding on a single pre
In most natural systems, predators have alternate prey, and tla spa
extent is important (see the Huffaker's experiment, 1958). A waynto
the role of spatial extent is to look at an island, which msy sérve to
limit the number of alternate prey.

The predator-pray interaction betweegalves and moosen Isle Royale

(located in Lake Superior) has been long studied and can provightinsi

into the dynamics of predator-pray systems in nature. It isvelagasy
to demonstrate that wolves in fact kill moose, but showingvthates
are responsible for regulating the moose population is moieuttifthe
wolves might only be killing moose that would die anyway. To
demonstrate that wolves regulate the moose population, one mwst
that, as the density of moose increase, the number of deaths fibm |
predation also increases. (In all the models, the predation terms ingG

tho
VO
ude

this effect.) The data do not provide a clear-cut answer.

Summary

We know whatanregulate populations:

- finite size of food supply (,Lebensraum”),

- cannibalism,

- competitors,

- predators (or parasitoids),

- diseases etc.,

but we do not know what actualipesregulate populations.

We have two possibilities:
1) Dynamics observed in the naturemodel-calculation.
Drawback can clearlyrejecta proposed explanation of regulation but capmoteone.

2) Field experiment: removal of a putative comjpetilr augmentation of the food
supply, etc.

Drawback some potential regulating mechanisms
a) cannot be manipulated at all (e.g. diseases), or

b) can be manipulated time (e.g. long-lived organisms as trees or tortoise&) o
spacewith great difficulties.
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