







Teaching Mathematics and Statistics in Sciences HU-SRB/0901/221/088

Practical application of biostatistical methods in medical and biological research Novi Sad, 2011.

### Krisztina Boda PhD

**Department of MedicalPhysics and Informatics, University of Szeged, Hungary** 

- Why is a physician held in much higher esteem than a statistician?
- A physician makes an analysis of a complex illness whereas a statistician makes you ill with a complex analysis!
- http://my.ilstu.edu/~gcramsey/StatOtherPro.html

# Contents

#### Introduction

Motivating examples

#### Theory

- Types of studies
- □ Comparison of two probabilities
- Multiplicity problems
- □ Linear models
- □ Generalized linear models, logistic regression, relative risk regression

#### Practical application

- Introductions
- First version
- Multivariate modelling
- Correction of p-values

# Introduction

- Investigation of risk factors of some illness is one of the most frequent problems in medical research.
- Such problems usually need hard statistics, multivariate methods (such as multiple regression, general linear or nonlinear models).
- Motivating examples: investigation of risk factors of adverse respiratory events
  - use of laryngeal mask airway (LMA) 60 variables about 831 children
  - respiratory complications in paediatric anaesthesia 200 variables about 9297 children

Motivating example 1: Incidence of Adverse Respiratory Events in Children with Recent Upper Respiratory Tract Infections (URI)

- The laryngeal mask airway (LMA) is a technique to tracheal intubation for airway management of children with recent upper respiratory tract infections (URIs).
- The occurrence of adverse respiratory events was examined and the associated risk factors were identified to assess the safety of LMA in children.

von Ungern-Sternberg BS., Boda K., Schwab C., Sims C., Johnson C., Habre W.: Laryngeal mask airway is associated with an increased incidence of adverse respiratory events in children with recent upper respiratory tract infections. Anesthesiology 107(5):714-9, 2007. IF: 4.596

### Data about 831 children

#### Independent (exploratory) variables (risk factors??)

- □ Demography
  - Gender, age, weight, etc.
- Medical history
  - Asthma, cough, allergy, smoking, etc.
- Symptoms of URI
  - Fever, moist cough, runny nose, etc.
- Medication and maintenance of anaesthesia
  - Surgery, airway management, etc.
- Dependent (outcome) variables
  - Respiratory adverse events: laryngospasm, bronchospasm, airway obstruction, cough, oxigen desaturation, overall (any of them)
  - □ Intraoperative / in the recovery room

# Variables in the data file

#### \*Ima-gva-cleaned-corrected30.sav [DataSet2] - SPSS Data Editor File Edit View Data Transform Analyze Graphs Utilities Window Help

#### 

|                 | Name               | Туре          | Width | Decimals | Label                          | Vali            | 105             | Miec                | sina              |       |          |                                                      |                                     |         |
|-----------------|--------------------|---------------|-------|----------|--------------------------------|-----------------|-----------------|---------------------|-------------------|-------|----------|------------------------------------------------------|-------------------------------------|---------|
| 5               | cold               | Numeric       | 8     | 0        |                                | {0, no}         |                 |                     | orrected30.sav [D |       |          |                                                      |                                     |         |
| 6               | runnynos           | Numeric       | 8     | 0        | runny nose                     | {1, last 2 week |                 |                     | Transform Analyz  |       |          | ow Help                                              |                                     |         |
| 7               | clearnos           | Numeric       | 8     | 0        | clear runny nose               | {0, no}         | 👝 🔚 🔒           | 1 📴 🛧 🔿             | 🏪 🖪 🖷 📩           |       | S 00     |                                                      |                                     |         |
| 8               | greenose           | Numeric       | 8     | 0        | nasty, green runny nose        | {0, no}         |                 | Name                | Туре              | Width | Decimals | Label                                                | Values                              | Missing |
| 9               | fever              | Numeric       | 8     | 0        | fever                          | {0, no}         | 45              | pradvers            | Numeric           | 8     | 2        | Adverse event during the proc.                       | {.00, No}                           | None    |
| 10              | drycough           | Numeric       | 8     | 0        | dry cough                      | {0, no}         | 46              | rradvers            | Numeric           | 8     | 2        | Adverse event in r.room                              | {.00, No}                           | None    |
| 11              | moistcof           | Numeric       | 8     | 0        | moist cough                    | {0, no}         | 47              | adverse             | Numeric           | 8     | 2        | Adverse event                                        | {.00, No}                           | None    |
| 12              | asthma             | Numeric       | 8     | 0        | history of asthma              | {0, no}         | 48              | preins              | Numeric           | 8     | 2        | pre insertion                                        | None                                | None    |
| 13              | cough              | Numeric       | 8     | 0        | Nocturnal chronic cough        | {0, no}         | 49              | onins               | Numeric           | 8     | 2        | on insertion                                         | None                                | None    |
| 14              | allergy            | Numeric       | 8     | 0        | history of allergy             | {0, no}         | 50              | postins             | Numeric           | 8     | 2        | post insertion                                       | None                                | None    |
| 15              | smoking            | Numeric       | 8     | 0        | passive smoking                | {0, no}         | 51              | onrem               | Numeric           | 8     | 2        | on removal                                           | None                                | None    |
| 16              | procedur           | Numeric       | 8     | 0        | surgical procedure             | {1, lower abdo  | 52              | postrem             | Numeric           | 8     | 2        | post removal                                         | None                                | None    |
| 17              | registra           | Numeric       | 8     | 0        | doctor                         | {1, registrar}  | 53              | intrven0            | Numeric           | 8     | 2        | intravenous induction recoded                        | {.00, no}                           | None    |
| 18              | inhalat            | Numeric       | 8     | 0        | inhalation induction           | {0, no}         | 54              | intrvenp            | Numeric           | 8     | 2        | intravenous induction recoded                        | {.00, propofol}                     | None    |
| 19              | intraven           | Numeric       | 8     | 0        | intravenous induction          | {0, no}         | 55              | intprno             | Numeric           | 8     | 2        | intravenous induction recoded                        | {.00, propofol}                     | None    |
| 20              | midazola           | Numeric       | 8     | 0        | premedication                  | {0, no}         | 56              | intprthi            | Numeric           | 8     | 2        | intravenous induction recoded                        | {.00, propofol}                     | None    |
| 21              | narcotic           | Numeric       | 8     | 0        |                                | {0, no}         | 57              | registr1            | Numeric           | 8     | 2        |                                                      | {.00, 1 'registrar' 1 'consultant'} | None    |
| 22              | regional           | Numeric       | 8     | 0        |                                | {0, no}         | 58              | nmlaryn1            | Numeric           | 8     | 2        |                                                      | None                                | None    |
| 23              | caudal             | Numeric       | 8     | 0        |                                | {0, no}         | 59              | nmlaryn             | Numeric           | 8     | 2        |                                                      | None                                | None    |
| 24              | Imasize            | Numeric       | 8     | 1        |                                | None            | 60              | laryng              | Numeric           | 8     | 2        | Laryngospasm during the proc. or in the r.room       | {.00, No}                           | None    |
| 25              | reinforc           | Numeric       | 8     | 0        |                                | {0, no}         | 61              | prother             | Numeric           | 8     | 2        | Adverse events except laryng during the proc         | {.00, No}                           | None    |
| 26              | lignocai           | Numeric       | 8     | 0        | jelly put on the cuff          | {0, no}         | 62              | bronch              | Numeric           | 8     | 2        | Bronchospasm during the proc. or in the r.room       | {.00, No}                           | None    |
|                 | attempts           | Numeric       | 8     | 0        | number of attempts to insert   | None            | 63              | obstr               | Numeric           | 8     | 2        | Airway obstr during the proc. or in the r.room       | {.00, No}                           | None    |
| 28              | laryngos           | Numeric       | 8     | 0        |                                | {0, no}         | 64              | des                 | Numeric           | 8     | 2        | Desaturation obstr during the proc. or in the r.room | {.00, No}                           | None    |
|                 | bronchos           | Numeric       | 8     | 0        |                                | {0, no}         | 65              | coug                | Numeric           | 8     | 2        | Cough during the proc. or in the r.room              | {.00, No}                           | None    |
| 30              | obstruc            | Numeric       | 8     | 0        |                                | {0, no}         | 66              | coldsymt            | Numeric           | 8     | 2        |                                                      | None                                | None    |
| 31              | desat              | Numeric       | 8     | 0        |                                | {0, no}         | 67              | group               | Numeric           | 8     | 2        |                                                      | {.00, No cold}                      | None    |
| 32              | Imacough           | Numeric       | 8     | 0        | respiratory complications      | {0, no}         | 68              | uri                 | Numeric           | 8     | 2        | Children with recent URI                             | {.00, no}                           | None    |
| 33              | removal            | Numeric       | 8     | 0        |                                | {0, deep}       | 69              | filter_\$           | Numeric           | 1     | 0        | uri = 1 (FILTER)                                     | {0, Not Selected}                   | None    |
| 34              | rrlaryng           | Numeric       | 8     | 0        | laryngospasm in recovery       | {0, no}         | 70              | perlaryng           | Numeric           | 8     | 2        | Laryngospasm during the proc.                        | {.00, No}                           | None    |
| 35              | rrbronch           | Numeric       | 8     | 0        | bronchospasm in recovery       | {0, no}         | 71              | perbronch           | Numeric           | 8     | 2        | Bronchospasm during the proc.                        | {.00, No}                           | None    |
|                 | rrobstr            | Numeric       | 8     | 0        | ainway obstruction in recover  | {0, no}         | 72              | perobstr            | Numeric           | 8     | 2        | Airway obstr during the proc.                        | {.00, No}                           | None    |
|                 | rrdesat            | Numeric       | 8     | 0        | desaturation in recovery       | {0, no}         | 73              | perdesat            | Numeric           | 8     | 2        | Desaturation obstr during the proc.                  | {.00, No}                           | None    |
|                 | rrcough            | Numeric       | 8     | 0        | cough in recovery              | {0, no}         | 74              | percough            | Numeric           | 8     | 2        | Cough during the proc.                               | {.00, No}                           | None    |
|                 | oxygen             | Numeric       | *     |          | oxygen in recovery             | {0, no}         |                 | ENT                 | Numeric           | 8     | 2        |                                                      | {.00, all other surgical proc.}     | None    |
|                 | timeoxyg           | Numeric       | 8     | 2        | total time oxygen administrati | None            |                 | respevent           | Numeric           | 8     | 2        | number of resp. events during the proc. or in the rr | {.00, 0}                            | None    |
| <b>∢ ) </b> \Da | ta View <b>∖Va</b> | riable View / |       |          | •                              |                 | 77              | induction           | Numeric           | 8     | 2        |                                                      | {.00, sevo/halo}                    | None    |
|                 |                    |               |       |          |                                |                 | 78              | attern1             | Numeric           | 8     | 2        | Number of attempts                                   | {.00, 1}                            | None    |
|                 |                    |               |       |          |                                |                 | 79              | allcomp             | Numeric           | 8     | 2        | All complications during the proc. or in the r.room  | {.00, No}                           | None    |
|                 |                    |               |       |          |                                |                 |                 | PRE_1               | Numeric           | 11    | 5        | Predicted probability                                | None                                | None    |
|                 |                    |               |       |          |                                |                 | <u>∢ ) ∖</u> Da | ata View <b>∖Va</b> | riable View /     |       |          | •                                                    |                                     |         |
|                 |                    |               |       |          |                                |                 |                 |                     |                   |       |          |                                                      | EDEE Drococcor is roady             |         |

# The data file (part)

| Edit | View Dat             | a Transform          |                | SPSS Data Edito<br>Graphs Utilit | ies Window Help            |               |          |       |           | HU magyar | r (Magyarorsz | :ág) 🕐 Súgi | 5 😳     |         |                                       |                        |                  |                      |          |            |           |               |              |          |
|------|----------------------|----------------------|----------------|----------------------------------|----------------------------|---------------|----------|-------|-----------|-----------|---------------|-------------|---------|---------|---------------------------------------|------------------------|------------------|----------------------|----------|------------|-----------|---------------|--------------|----------|
|      | 🖬 💼 🔶                | ه 🖦                  | 2 🗛 📲 I        | 🏦 🖽 🗗                            | 🖡 💽 🥥 🌑                    |               |          |       |           |           |               |             |         |         |                                       |                        |                  |                      |          |            |           |               |              |          |
| late |                      |                      |                |                                  | 05.12.94                   |               |          |       |           |           |               |             |         |         |                                       |                        |                  |                      |          |            | V         | isible: 80 of | 80 Variables | ;        |
|      | date                 | opdate               | weight         | sex                              | cold runnyno               | s clearnos    | greenose | fever | drycough  | moistcof  | asthma        | cough       | allergy | smoking | procedur                              | registra               | inhalat          | intraven             | midazola | narcotic   | regional  | caudal        | Imasize      | reinforc |
|      | 05.12.94             | 11.03.98             | 15.45          | boy                              | yes between                | -             | no       | no    | yes       | no        | no            | yes         | no      |         | lower abdo                            |                        |                  |                      |          |            |           |               | 2.0          | no       |
|      | 20.06.96             | 28.04.98             | 13.50          | girl                             | 110                        | 0 по          | no       | no    | no        | no        | no            | no          | no      | yes     |                                       | registrar              |                  | no                   |          |            |           | no            | 2.0          | no       |
| _    | 31.03.87             | 28.07.98             | 40.50          | girl                             | yes between                |               | no       | no    | no        | no        | no            | no          | no      | no      |                                       | -                      | no               | propofol             | no       | yes        | yes       | no            | 3.0          | no       |
|      | 23.01.96<br>17.09.96 | 13.03.98<br>13.03.98 | 12.25<br>11.45 | boy                              |                            | 0 no          | no       | no    | no        | no        | no            | no          | no      |         | opthalmolo                            | registrar              | sevo, halo       | no                   | no       | yes        | no        | no            | 2.0          | yes      |
| _    | 05.10.86             | 13.03.98             | 11.45          | girl<br>boy                      | yes last 2 we              | e yes<br>0 no | no       | no    | no        | no        | no            | no          | no      | no      | orthop<br>lower abdo                  | registrar              |                  | propofol             | no       | yes        | yes<br>no | no            | 2.0          | no       |
|      | 03.05.95             | 09.03.98             | 13.00          | boy                              | yes before 4               |               | no       | no    | no        | no        | no            | no          | no      | no      | lower abdo                            | registrar              | no<br>sevo, halo | proporor             | no       | yes<br>no  | no        | yes           | 2.0          | no       |
|      | 29.09.95             | 09.03.98             | 13.60          | girl                             |                            | 0 no          | no       | no    | no        | no        | no            | no          | no      |         | opthalmolo                            |                        | no               | propofol             | no       | yes        | no        | no            | 2.0          | no       |
|      | 18.02.96             | 09.03.98             | 12.70          | girl                             | yes between                |               | no       | no    | no        | no        | ves           | no          | ves     |         | opthalmolo                            |                        | sevo, halo       | no                   | no       | yes        | no        | no            | 2.0          | no       |
|      | 20.06.95             | 09.03.98             |                | girl                             |                            | 0 no          | no       | no    | no        | no        | no            | no          | no      | no      | · · · · · · · · · · · · · · · · · · · | registrar              | no               | propofol             | no       | no         | no        | yes           | 2.0          | no       |
| -    | 05.12.96             | 09.03.98             |                | boy                              | no                         | 0 no          | no       | no    | no        | no        | no            | no          | no      |         | opthalmolo                            |                        | sevo, halo       | no                   | no       | no         | no        | no            | 2.0          | no       |
|      | 19.08.96             | 10.03.98             | 11.00          | boy                              | no                         | 0 no          | no       | no    | no        | no        | no            | no          | yes     | no      |                                       | registrar              | no               | propofol             | no       | no         | no        | yes           | 2.0          | no       |
|      | 01.08.85             | 10.03.98             | 42.30          | boy                              | yes last 2 we              | e yes         | no       | no    | no        | no        | yes           | no          | no      | yes     | lower abdo                            |                        | no               |                      |          |            |           |               | 3.0          | no       |
| 1    | 21.01.82             | 10.03.98             | 58.90          | boy                              | no                         | 0 no          | no       | no    | no        | no        | no            | no          | no      | no      | plastic                               | consultant             | no               | propofol             | yes      | yes        | no        | no            | 3.0          | yes      |
|      | 29.03.94             | 10.03.98             | 15.00          | boy                              | yes last 2 we              | e yes         | no       | no    | yes       | no        | no            | no          | no      | no      | miscellane                            | consultant             | no               | no                   | no       | no         |           | no            | 2.0          | no       |
| -    | 09.02.90             | 10.03.95             | 35.00          | boy                              |                            | 0 no          | no       | no    | no        | no        | no            | no          | no      | yes     | miscellane                            | consultant             | no               | no                   | no       | no         |           | no            | 2.5          | no       |
|      | 11.10.87             | 10.03.98             | 40.00          | girl                             |                            | 0 no          | no       | no    | no        | no        | no            | no          | no      | no      | orthop                                |                        |                  | no                   | no       | yes        | no        | no            | 2.5          | no       |
| ┞    | 16.07.84             | 10.03.98             | 42.50          | boy                              | yes between                | -             | no       | no    | no        | yes       | no            | yes         | yes     | no      | plastic                               |                        | sevo, halo       | no                   |          |            |           |               | 3.0          | yes      |
|      | 16.06.87             | 10.03.98             | 47.70          | girl                             | no                         | 0 no          | no       | no    | no        | no        | yes           | no          | yes     | no      | orthop                                |                        | no               | propofol             | no       | no         | no        | yes           | 3.0          | no       |
| _    | 10.01.97             | 10.03.98             |                | girl                             | yes last 2 we              |               | yes      | no    | no        | yes       | no            | no          | no      |         | lower abdo                            |                        |                  | no                   | no       | no         | no        | no            | 2.0          | no       |
|      | 02.11.92             | 10.03.98             | 18.90<br>11.00 | girl                             |                            | 0 no          | no       | no    | no        | no        | no            | no          | no      | no      | ENT<br>ENT                            |                        | sevo, halo       | no                   | no       | yes        | no        | no            | 2.0          | no       |
| _    | 28.04.93             | 11.03.98             | 19.52          | boy                              | yes between<br>yes between |               | no       | yes   | no        | no        | yes           | no          | no      | no      | ENT                                   | registrar              | sevo, halo       | no                   |          |            |           |               | 2.0          | no       |
|      | 25.06.98             | 11.03.97             | 30.20          | boy<br>boy                       | no                         | 2 yes<br>0 no | no       | no    | yes<br>no | no        | no            | no          | no      | yes     | orthop                                |                        | no               | propofol             | ves.     | ves        | no        | no            | 3.0          | no       |
|      | 24.08.91             | 11.03.98             | 30.20          | boy                              | yes between                |               | no       | no    | no        | yes       | no            | no          | no      | no      | onnop                                 | registrar              | no               | proporor             | no       | yes        | no        | no            | 2.5          | no       |
|      | 19.04.94             | 11.03.98             | 17.40          | boy                              |                            | 0 no          | no       | no    | no        | no        | no            | yes         | no      | no      | orthop                                |                        | no               | propofol             | yes      | yes        | no        | yes           | 2.0          | no       |
|      | 12.05.87             | 11.03.98             | 35.00          | boy                              |                            | 0 no          | no       | no    | no        | no        | no            | no          | yes     | no      | ENT                                   |                        | no               | propofol             | yes      | no         | no        | no            | 3.0          | no       |
|      | 26.01.92             | 11.03.98             | 29.10          | boy                              | yes before 4               |               | no       | no    | yes       | no        | no            | no          | no      |         | lower abdo                            |                        | no               | propofol             | no       | yes        | yes       | no            | 2.5          | no       |
| 1    | 28.09.88             | 11.03.98             | 31.60          | girl                             | no                         | 0 no          | no       | no    | no        | no        | yes           | no          | yes     | no      | ENT                                   | consultant             | no               | propofol             | no       | no         | no        | no            | 2.5          | no       |
| 1    | 03.09.96             | 11.03.98             | 13.05          | girl                             | no                         | 0 no          | no       | no    | no        | no        | no            | no          | no      | no      | ENT                                   | registrar              | sevo, halo       | no                   | no       | yes        | no        | no            | 2.0          | no       |
|      | 20.09.96             | 12.03.98             | 14.10          | boy                              | no                         | 0 no          | no       | no    | no        | no        | no            | no          | no      | no      | lower abdo                            | consultant             | sevo, halo       | no                   | no       | yes        | no        | yes           | 2.0          | no       |
|      | 15.09.96             | 12.03.98             | 12.30          | boy                              | yes before 4               | w yes         | no       | no    | no        | yes       | no            | yes         | no      | no      | lower abdo                            | registrar              | sevo, halo       | no                   | no       | yes        | yes       | no            | 2.0          | no       |
|      | 08.08.96             | 12.03.98             | 11.65          | boy                              |                            | 0 no          | no       | no    | no        | no        | no            | yes         | yes     | no      | lower abdo                            | registrar              | no               | propofol             | no       | yes        | yes       | no            | 2.0          | no       |
|      | 12.12.82             | 12.03.98             | 54.00          | girl                             | 110                        | 0 no          | no       | no    | no        | no        | no            | no          | no      | yes     | lower abdo                            | registrar              | no               |                      | yes      | yes        | no        | no            | 3.0          | no       |
| _    | 04.05.97             | 11.03.98             | 9.80           | boy                              | yes last 2 we              |               | no       | no    | no        | no        | no            | no          | no      |         | lower abdo                            | -                      | no               |                      | no       | no         | no        | yes           | 1.5          | no       |
|      | 04.08.91             | 11.03.98<br>13.03.98 | 21.85          | girl                             |                            | 0 no          | no       | no    | no        | no        | no            | no          | no      | no      | plastic                               | registrar              | no               | propofol             | no       | yes        | no        | no            | 2.5          | no       |
|      | 11.04.86<br>02.02.84 | 13.03.98             | 72.80<br>52.75 | boy                              |                            | 0 no<br>0 no  | no       | no    | no        | no        | no            | no          | no      |         | lower abdo                            |                        | no               | propofol             | no       | yes        | no        | no            | 3.0<br>3.0   | no       |
|      | 19.03.94             | 16.03.98             | 24.00          | boy<br>girl                      |                            | 0 no<br>0 no  | no       | no    | no        | no        | yes           | no          | no      | no      | plastic<br>plastic                    | registrar<br>registrar | no               | propofol<br>propofol | no       | yes<br>yes | no        | no            | 2.0          | no       |
|      | 02.12.83             | 16.03.98             | 71.80          | boy                              |                            | 0 no          | no       | no    | no        | no        | ves           | no          | no      |         | lower abdo                            |                        | 10               | propoloi             | 10       | yes        | 10        | 110           | 2.0          | no       |
|      | 05.04.94             | 16.03.98             | 15.40          | girl                             |                            | 0 no          | no       | no    | no        | no        | yes           | no          | no      | yes     | plastic                               | registrar              | sevo, halo       | no                   | no       | no         | no        | no            | 2.0          | no       |
| _    | 22.04.95             | 13.03.98             | 15.60          | boy                              |                            | 0 no          | no       | no    | no        | no        | no            | no          | no      |         | lower abdo                            |                        | sevo, halo       | no                   | no       | no         | no        | yes           | 2.0          | no       |
|      | 08.03.88             | 17.03.98             | 51.80          | boy                              |                            | 0 no          | no       | no    | no        | no        | no            | no          | no      |         | lower abdo                            |                        |                  | no                   | no       | no         | yes       | no            | 3.0          | no       |
| -    | 30.12.89             | 17.03.98             | 28.00          | boy                              |                            | 0 no          | no       | no    | no        | no        | no            | no          | no      | no      | lower abdo                            | registrar              | no               | propofol             | no       | no         | yes       | no            | 2.5          | no       |
| t    | 30.08.84             | 17.03.98             | 61.00          | girl                             | no                         | 0 no          | no       | no    | no        | no        | no            | no          | no      | yes     | orthop                                |                        | no               | propofol             | yes      | yes        | no        | no            | 3.0          | no       |
|      | 27.11.92             | 17.03.98             | 18.60          | girl                             | yes before 4               | w no          | no       | no    | yes       | no        | no            | no          | no      | yes     | plastic                               | registrar              | no               | propofol             | no       | yes        | no        | no            | 2.5          | no       |
|      | 15.10.97             | 17.03.98             | 8.10           |                                  | no                         | 0 no          | no       | no    | no        | no        | no            | no          | no      | no      |                                       | registrar              | sevo, halo       | no                   | no       | no         | yes       | no            | 1.5          | no       |
| ata  | View X Va            | riable View          | /              |                                  |                            |               |          |       |           |           | m             |             |         |         |                                       |                        |                  |                      |          |            |           |               |              |          |
| _    |                      |                      |                |                                  |                            |               |          |       |           |           |               |             |         |         |                                       |                        | SPSS F           | processor is re      | ady      |            |           |               |              |          |

# Some univariate results

Table 1. Demographic and Medical History of Children withand without a Recent Upper Respiratory Tract Infection

| Variable                   | Without URI<br>(n = 608) | URI<br>(n = 223) | P Value*  |
|----------------------------|--------------------------|------------------|-----------|
| Age, mean (SE), yr         | 6.9 (0.18)               | 5.1 (0.27)       | <0.0001*  |
| Weight, mean (SE), kg      | 26.4 (0.71)              | 21.8 (1.01)      | < 0.0001* |
| Male sex, %                | 63.9                     | 32.3             | 0.325     |
| History of asthma, %       | 16.1                     | 22.0             | 0.052     |
| Nocturnal chronic cough, % | 11.2                     | 15.7             | 0.096     |
| History of allergy, %      | 17.3                     | 16.6             | 0.917     |
| Passive smoking, %         | 17.4                     | 21.5             | 0.191     |
| Symptoms of URI, %         |                          |                  |           |
| Fever                      | 3.9                      | 18.4             | < 0.0001  |
| Dry cough                  | 9.0                      | 32.3             | < 0.0001  |
| Moist cough                | 6.4                      | 29.1             | < 0.0001  |

\* P value from Mann–Whitney U test; other P values from Fisher exact test. URI = upper respiratory tract infection.

#### Table 2. Incidence of Respiratory Complications in the Two Groups of Children

|                                                   | No URI, % (n = 608) | URI, % (n = 223) | OR    | 95% CI      | P Value   |
|---------------------------------------------------|---------------------|------------------|-------|-------------|-----------|
| Overall complications in the perioperative period |                     |                  |       |             |           |
| Laryngospasm                                      | 3.1                 | 7.6              | 2.558 | 1.305-5.016 | 0.007†    |
| Bronchospasm                                      |                     | 0.9              | _     | _           | 0.072     |
| Airway obstruction                                | 7.1                 | 6.3              | 0.880 | 0.472-1.642 | 0.759     |
| Oxygen desaturation                               | 11.4                | 19.3             | 1.863 | 1.228-2.825 | 0.004†    |
| Cough                                             | 7.5                 | 17.9             | 2.730 | 1.728-4.313 | < 0.0001* |
| Overall‡                                          | 19.1                | 31.8             | 1.981 | 1.401-2.803 | < 0.0001* |

## Question

Which are the real risk factors of the respiratory adverse events?

Motivating example 2: Investigation of risk factors of respiratory complications in paediatric anaesthesia

Perioperative respiratory adverse events in children are one of the major causes of morbidity and mortality during paediatric anaesthesia. We aimed to identify associations between family history, anaesthesia management, and occurrence of perioperative respiratory adverse events.

 von Ungern-Sternberg BS., Boda K., Chambers NA., Rebmann C., Johnson C., Sly PD, Habre W.:: Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study, The Lancet, 376 (9743): 773-783, 2010.

## Data

- We prospectively included all children who had general anaesthesia for surgical or medical interventions, elective or urgent procedures at Princess Margaret Hospital for Children, Perth, Australia, from Feb 1, 2007, to Jan 31,2008.
- On the day of surgery, anaesthetists in charge of paediatric patients completed an adapted version of the International Study Group for Asthma and Allergies in Childhood questionnaire. <u>RESPIRATORY COMPLICATIONS without boxes.doc</u>
- We collected data on family medical history of asthma, atopy, allergy, upper respiratory tract infection, and passive smoking.
- Anaesthesia management and all perioperative respiratory adverse events were recorded.
- 9297 questionnaires were available for analysis.
- Number of variables: more than 300.

## Statistical methods and problems

- Check the data base are data consequently coded, etc.
- Univariate methods
- Correction of univariate p-values to avoid the inflation of the Type I error
- Examining relationship (correlation) between variables
- Multiple regression modelling
  - Possible problems to find a reasonable model:
    - Number of independent variables not too much, not too small
    - Avoid multicollinearity
    - Good fit
    - Checking interactions
    - Comparison of models

Univariate methods

#### Description of contingency tables (Agresti)

- Notation
  - □ X categorical variable with *I* categories
  - $\Box$  Y categorical variable with J categories
- Variables can be cross tabulated. The table of frequencies is called contingency table or cross-classification table with *I* rows and *J* columns, *IxJ* table.
- Generally, X is considered to be independent variable and Y is a dependent variable(outcome)

|         | Му              | Myocardial Infarction |              |  |  |  |  |  |  |
|---------|-----------------|-----------------------|--------------|--|--|--|--|--|--|
|         | Fatal<br>Attack | Nonfatal<br>Attack    | No<br>Attack |  |  |  |  |  |  |
| Placebo | 18              | 171                   | 10,845       |  |  |  |  |  |  |
| Aspirin | 5               | 99                    | 10,933       |  |  |  |  |  |  |

#### TABLE 2.1Cross-Classification of Aspirin Use andMyocardial Infarction

*Source:* Preliminary report: Findings from the aspirin component of the ongoing Physicians' Health Study. *New Engl. J. Med.* **318**: 262–264 (1988).

## **Probability distributions**

- $\pi_{ij}$ : the probability that (X, Y) occurs in the cell in row *i* and column *j*. The probability distribution  $\{\pi_{ij}\}$  is the joint distribution of X and Y
- The marginal distributions are the row and column totals that result from summing the joint probabilities.
- $\pi_{j|i}$ : Given that a subject is classified in row *i* of X,  $\pi_{j|i}$  is the probability of classification in column *j* of Y, *j*=1, ..., J.
- The probabilities  $\{\pi_{1|i}, \pi_{2|i}, ..., \pi_{J|i}\}$  form the conditional distribution of Y at category *i* of X.
- A principal aim of many studies is to compare conditional distributions of Y at various levels of explanatory variables.

TABLE 2.3Notation for Joint, Conditional, andMarginal Probabilities

| Column |                |                           |            |  |  |  |  |  |
|--------|----------------|---------------------------|------------|--|--|--|--|--|
| Row    | 1              | 2                         | Total      |  |  |  |  |  |
| 1      | ${m \pi}_{11}$ | ${m \pi}_{12}$            | $\pi_{1+}$ |  |  |  |  |  |
|        | $(\pi_{1 1})$  | $(\pi_{2 1})$             | (1.0)      |  |  |  |  |  |
| 2      | $\pi_{21}$     | $\pi_{22}$                | $\pi_{2+}$ |  |  |  |  |  |
|        | $(\pi_{1 2})$  | $(\pi_{2 2}) \\ \pi_{+2}$ | (1.0)      |  |  |  |  |  |
| Total  | $\pi_{\pm 1}$  | $\pi_{+2}$                | 1.0        |  |  |  |  |  |

# Types of studies

- **Case-controll (retrospective)**. The smoking behaviour of 709 patients with lung cancer was examined For each of the 709 patients admitted, researchers studied the smoking behaviour of a noncancer patient at the same hospital of the same gender and within the same 5-year grouping on age.
- **Prospective.** Groups of smokers and non-smokers are observed during years (30 years) and the outcome (cancer) is observed at the end of the study.
- Clinical trials- randomisation of the patients
- **Cohort** studies subjects make their own choice about whether to smoke, and the study observes in future time who develops lung cancer.
- **Cross-sectional studies** samples subjects and classifies them simultaneously on both variables.

|        | Lung  | , Cancer |
|--------|-------|----------|
| Smoker | Cases | Controls |
| Yes    | 688   | 650      |
| No     | 21    | 59       |
| Total  | 709   | 709      |

TABLE 2.5 Cross-Classification of Smoking by

Source: Based on data reported in Table IV, R. Doll and A. B. Hill, British Med. J., Sept. 30, 1950, pp. 739-748.

Lung Cancer

#### Prospective studies usually condition on the totals for categories of X and regard each row of J counts as an independent multinomial sample on Y.

- Retrospective studies usually treat the totals for Y as fixed and regard each column of I counts as a multinomial sample on X.
- In cross-sectional studies, the total sample size is fixed but not the row or column totals, and the IJ cell counts are a multinomial sample.

#### Comparison of two proportions

- Notation in case 2x2-es: instead of  $\pi_{2|i} = 1 \pi_{1|i}$ , simply  $\pi_1 \pi_2$
- Difference (absolute risk difference)  $\pi_1$ - $\pi_2$ 
  - It falls between -1 and 1
  - The response Y is statistically independent of the row classification when the difference is 0
- Ratio (relative risk, risk ratio, RR)  $\pi_1/\pi_2$ 
  - It can be any nonnegative number
  - □ A relative risk of 1.0 corresponds to independence
  - Comparing probabilities close to 0 or 1, the differences might be negligible while their ratio is more informative

#### Odss ratio, OR, here Ω

- □ For a probability of  $\pi$  success, the odds are defined to be  $\Omega = \pi/(1 \pi)$
- $\Box$  Odds are nonnegative.  $\Omega$ >1, when a success is more likely than a failure.
- □ Getting probability from the odds:  $\pi = \Omega/(\Omega+1)$
- Odds ratio

$$\theta = \frac{\Omega_1}{\Omega_2} = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$$

□ Odds ratio when the cell probabilities  $\pi_{ij}$  are given  $\Omega_{i} = \pi_{i1}/\pi_{i2}$ , i=1,2

$$\theta = \frac{\pi_{11}/\pi_{12}}{\pi_{21}/\pi_{22}} = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}}$$

# Odds ratio (OR) and relative risk (RR)

when each probability is small, the odds ratio provides a rough indication of the relative risk when it is not directly estimable

odds ratio = relative risk
$$\left(\frac{1-\pi_2}{1-\pi_1}\right)$$
.

# Odds ratio and logistic regression

- Logistic regression models give the estimation of odds ratio (adjusted or unadjusted).
- It has no distributional assumption, the algorithm is generally convergent.
- The use of logistic regression is popular in medical literature.

### Case-control studies and OR

| Illness      | groups                                              |     |
|--------------|-----------------------------------------------------|-----|
| Risk factorr | Case Control                                        | Σ   |
| present      | $\begin{array}{ccc} a: & b: \\ 40 & 20 \end{array}$ | 60  |
| absent       | $\begin{array}{ccc} c: & d: \\ 60 & 80 \end{array}$ | 140 |
| Σ            | 100 100                                             | 200 |

• Odds Ratio:  $OR = \frac{\text{odds of illness for smokers}}{\text{odds of illness for nonsmokers}} = \frac{a/b}{c/d} = \frac{a/c}{b/d} = \frac{ad}{bc} = \frac{40 \cdot 80}{20 \cdot 60} = 2,67$ 

- OR=1: independency, OR<<1: strong negative association, OR>>1: strong positive association.
- Interpretation. The illness is 2,67-times more likely to occur among smokers than among non-smokers.
   Comment. Although the retrospective sample is not representative for the ill/healthy ratio (a/b and c/d), we get correct estimation, because the ratios a/c and b/d are correct.
- In case of several risk factors, the common effect of several risk factors can be analysed using logistic regression, and adjusted odds ratios can be calculated.

### Prospective study and RR

| Illness      | groups                                              |     |
|--------------|-----------------------------------------------------|-----|
| Risk factorr | Case Control                                        | Σ   |
| present      | <i>a: b:</i><br>40 20                               | 60  |
| absent       | $\begin{array}{ccc} c: & d: \\ 60 & 80 \end{array}$ | 140 |
| Σ            | 100 100                                             | 200 |

#### Relative Risk (RR):

 $RR = \frac{\text{risk of illness for smokers}}{\text{risk of illness for smokers}} = \frac{a/(a+b)}{c/(c+d)} = \frac{80/1000}{40/1000} = \frac{0.08}{0.04} = 2$ 

Interpretation. The probability (risk) of illness is twice illness among smokers than among non-smokers.

When the incidence of illness is small in both groups (a << b, c << d), then  $RR \approx OR$ , i.e., the relative risk can be well approximated by the odds ratio

$$RR = \frac{a/(a+b)}{c/(c+d)} = \frac{80/1000}{40/1000} = 2 \approx OR = \frac{a/b}{c/d} = \frac{80/920}{40/960} = 2,087$$

#### **Case-control studies and the odds ratio**

- □ In case-control studies we cannot estimate some conditional probabilities
- Here, the marginal distribution of lung cancer is fixed by the sampling design (i.e. 709 cases and 709 controls), and the outcome measured is whether the subject ever was a smoker.
- □ We can calculate the conditional distribution of smoking behaviour, given lung cancer status: for cases with lung cancer, this is 688/709, and for controls it is 650/709.
- In the reverse direction (which would be more relevant) we cannot estimate the probability of disease, given smoking behaviour.
- When we know the proportion of the population having lung cancer, we can use Bayes' theorem to compute sample conditional distributions in the direction of main interest

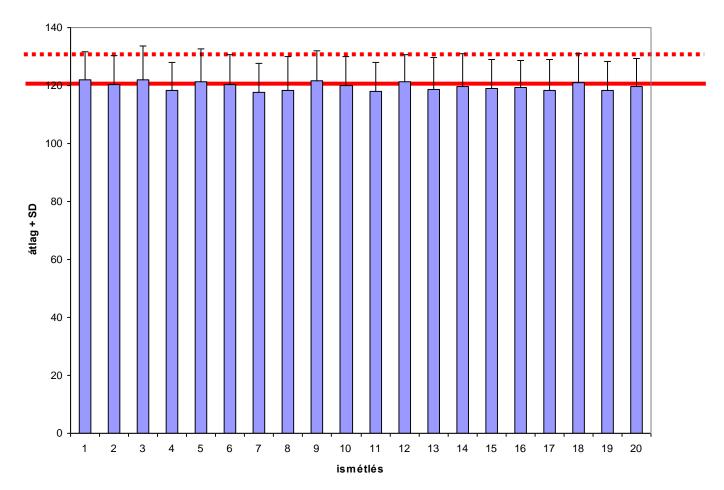
| Lung Cancer |                    |  |  |  |  |  |  |  |
|-------------|--------------------|--|--|--|--|--|--|--|
| Lung        | , Cancer           |  |  |  |  |  |  |  |
| Cases       | Controls           |  |  |  |  |  |  |  |
| 688         | 650                |  |  |  |  |  |  |  |
| 21          | 59                 |  |  |  |  |  |  |  |
| 709         | 709                |  |  |  |  |  |  |  |
|             | Cases<br>688<br>21 |  |  |  |  |  |  |  |

TABLE 2.5 Cross-Classification of Smoking by

Source: Based on data reported in Table IV, R. Doll and A. B. Hill, British Med. J., Sept. 30, 1950, pp. 739-748.

- 2.21 For a diagnostic test of a certain disease,  $\pi_1$  denotes the probability that the diagnosis is positive given that a subject has the disease, and  $\pi_2$  denotes the probability that the diagnosis is positive given that a subject does not have it. Let  $\rho$  denote the probability that a subject does have the disease.
  - **a.** Given that the diagnosis is positive, show that the probability that a subject does have the disease is

$$\pi_1 \rho / [\pi_1 \rho + \pi_2 (1 - \rho)].$$


Let "pos" denote positive diagnosis, "dis" denote subject has disease.

$$P(dis|pos) = \frac{P(pos|dis)P(dis)}{P(pos|dis)P(dis) + P(pos|no \ dis)P(no \ dis)}$$

# Comparison of several samples using univariate methods

The repeated use of t-tests is not appropriate

# Mean and SD of samples drawn from a normal population N(120, 10<sup>2</sup>), (i.e. $\mu$ =120 and $\sigma$ =10)



# Pair-wise comparison of samples drawn from the same distribution using *t*-tests

|          |                  | •          | •       | s: p-levels<br>icant at p | •          | )                                      |                            |                       |                       |                |         |
|----------|------------------|------------|---------|---------------------------|------------|----------------------------------------|----------------------------|-----------------------|-----------------------|----------------|---------|
| Variable | s10              | s1 1       | s12     | s13                       | s14        | s15                                    | s16                        | s17                   | s18                   | s19            | s20     |
| s1       | 0.30407          | 0.07484    | 0.78173 | 0.15872                   | 0.22271    | 0.15123                                | 0.21106                    | 0.02826               | 0.65675               | 0.04878        | 0.22301 |
| s2       | 0.94385          | 0.32693    | 0.44510 | 0.45003                   | 0.79924    | 0.46849                                | 0.73289                    | 0.35108               | 0.58983               | 0.31241        | 0.84292 |
| s3       | 0.36469          | 0.10013    | 0.83458 | 0.15161                   | 0.30077    | 0.15297                                | 0.20104                    | 0.13663               | 0.71210               | 0.09278        | 0.34899 |
| s4       | 0.33509          | 0.91259    | 0.06954 | 0.81184                   | 0.49090    | 0.64673                                | 0.52137                    | 0.99453               | 0.17286               | 0.97725        | 0.33843 |
| s5       | 0.49261          | 0.13965    | 0.99830 | 0.23623                   | 0.42063    | <sup>₄</sup> 0.1864 <u></u> 8          | 0.36294                    | 0.14388               | 0.86579               | 0.14724:       | 0.39985 |
| s6       | 0.90480          | 0.28520    |         |                           |            |                                        | 10.67473                   | 0.39279:              | ₫.707 <mark>86</mark> | <b>0.33013</b> | 0.79602 |
| s7       | 0.15756          | 0.87779    | 0.05375 | 0.63178                   | 0.36101    | <sup>20</sup> 0. <b>)</b> 2 <b>)</b> 3 | ₽. 5 3↑                    | <b>h</b> . 9686       | .09261                | 0181870        | 26351   |
| s8       | 0.46222          | 0.85891    | 0.15671 | 0.87889                   | 0.62412    | 0. 18 14 3                             | <b>).</b> 6 8 <sup>°</sup> | ).\$ 31 0\$           | . <b>1</b> BE DC      | (.9.358        | 0 56453 |
| s9       | 0.41991:         | 0.04018    | 0.87536 | 0.16744                   | 0.35766    | 0. 7 39 <sup>r</sup>                   | D. 5 7                     | ).( 9! 48             | .7 57 76              | 0.0 38 79      | C 37176 |
|          | <i>p</i> -values | s (detail) |         |                           | átlag + SD | 80                                     |                            |                       |                       |                |         |
|          |                  |            |         |                           |            | 1 2 3                                  | 4 5 6 7                    | 8 9 10 11<br>ismétlés | 12 13 14 15           | 16 17 18 19    | 20      |

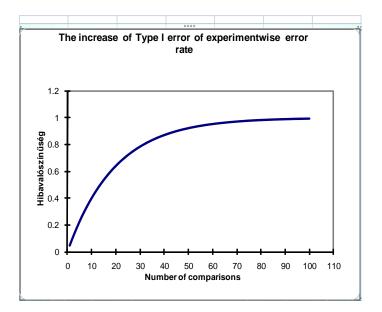
#### The increase of type I error

- It can be shown that when t tests are used to test for differences between multiple groups, the chance of mistakenly declaring significance (Type I Error) is increasing. For example, in the case of 5 groups, if no overall differences exist between any of the groups, using two-sample t tests pair wise, we would have about 30% chance of declaring at least one difference significant, instead of 5% chance.
- In general, the t test can be used to test the hypothesis that two group means are not different. To test the hypothesis that three ore more group means are not different, analysis of variance should be used.

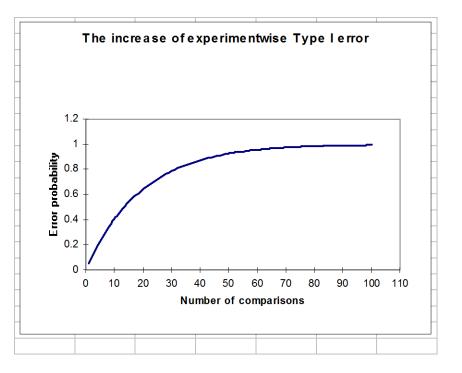
- Each statistical test produces a 'p' value
- If the significance level is set at 0.05 (false positive rate) and we do multiple significance testing on the data from a single clinical trial,
- then the overall false positive rate for the trial will increase with each significance test.

# Multiple hypotheses

- (H<sub>01</sub> and H<sub>02</sub> and... H<sub>0n</sub>) null hypotheses, the appropriate significance levels  $\alpha_1, \alpha_2, ..., \alpha_n$
- How to choose  $\alpha_i$ -s that the level of hypothesis (H<sub>01</sub> and H<sub>02</sub> and... H<sub>0n</sub>) be greater than a given  $\alpha$  ?  $\alpha \in (0,1)$


#### Increase of type I error

Gigen *n* null hypotheses,  $H_{oi}$ , i=1,2,...,n with significance level  $\alpha$ 


When the hypotheses are independent, the probability that at least one null hypothesis is falsely rejected, is:  $1-(1-\alpha)^n$ 

When the hypotheses are not independent, the probability that at least one null hypothesis is falsely rejected  $\leq n\alpha$ .

$$1 - (1 - \alpha)^n \le 1 - (1 - n\alpha) = n\alpha$$



- False positive rate for each test = 0.05
- Probability of incorrectly rejecting ≥ 1 hypothesis out of *N* testing
- $\blacksquare = 1 (1 0.05)^N$

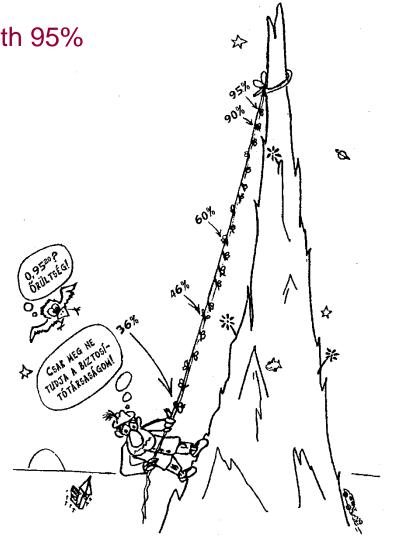


Correction of the unique p-values by the method of Bonferroni-Holm (step-down Bonferroni)

- Calculate the p-values and arrange them in increasing order p<sub>1</sub>≤p<sub>2</sub>≤...≤p<sub>n</sub>
- $H_{0i}$  is tested at level.  $\frac{\alpha}{n+1-i}$
- If any of them is significant, then we reject the hypothesis (H<sub>01</sub> and H<sub>02</sub> and... H<sub>0n</sub>).

#### Example. n=5

- $p_1 \quad \alpha/5=0.01$  if  $p_1 \ge 0.01$ , stop (there is no significant difference)
- $p_2 \quad \alpha/4=0.0125 \quad \text{if } p_2 \ge 0.0125, \text{ stop}$


. . .

- p<sub>3</sub> α/3=0.0166
- p<sub>4</sub> α/2=0.025 ....
- p<sub>5</sub> α/1=0.05

Knotted ropes: each knot is safe with 95% probability

- The probability that two knots are "safe" =0.95\*0.95
   =0.9025~90%
- The probability that 20 knots are "safe"
   =0.95<sup>20</sup>=0.358~36%
- The probability of a crash in case of 20 knots is ~64%





10. ábra. Nemtörődöm doktor, amint a nemzetközi szakirodalom által javasolt számos, egyenként meglehetősen biztonságos csomóval összekötözött mászókötélen függ. Ez az utolsó felvétel Nemtörődöm doktorról. Egy naiv elképzelésnek esett áldozatul, azt hitte, hogy a tudomány megbízhatósági kritériumait a hegymászásra is alkalmazni lehet

### Correction of p-values using PROC MULTTEST is SAS software

The SAS System

The Multtest Procedure

p-Values

| Test | Raw    | Stepdown<br>Bonferroni | Hochberg | False<br>Discovery<br>Rate |
|------|--------|------------------------|----------|----------------------------|
| 1    | 0.9999 | 1.0000                 | 0.9999   | 0.9999                     |
| 2    | 0.2318 | 0.9272                 | 0.9272   | 0.5795                     |
| 3    | 0.3771 | 1.0000                 | 0.9999   | 0.6285                     |
| 4    | 0.8231 | 1.0000                 | 0.9999   | 0.9999                     |
| 5    | 0.0141 | 0.0705                 | 0.0705   | 0.0705                     |

. .

## Linear models

## The General Linear Model(GLM)

The general form of the linear model is

 $y = X\beta + \varepsilon,$ 

where

y is an n x1 response vector,

X is an n x p matrix of constants ("design" matrix), columns are mainly values

of 0 or 1 and values of independent variables,

 $\beta$  is a  $p \ge 1$  vector of parameters, and

 $\varepsilon$  is an *n* x 1 random vector whose elements are independent and all have normal distribution N(0,  $\sigma^2$ ).

For example, a linear regression equation containing three independent variables can be written as  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$ , +  $\varepsilon$ , or

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \mathbf{X} = \begin{bmatrix} 1 \ x_{11} \ x_{12} \ x_{13} \\ 1 \ x_{21} \ x_{22} \ x_{23} \\ \vdots \ \vdots \ \vdots \ \vdots \\ 1 \ x_{n1} \ x_{n2} \ x_{n3} \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_0 \\ \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

## Limitations

- Normal distribution what happens when normality does not hold?
- Constant variance What happens when variance is not constant?
- Dependent variable what happens when dependent variable is categorical or binary?

# The generalized linear model

### A generalized linear model has three components:

- 1. Random component. Response variables  $Y_1, \ldots, Y_N$  which are assumed to share the same distribution from the exponential family;
- 2. A set of parameters  $\boldsymbol{\beta}$  and explanatory variables

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1^T \\ \vdots \\ \boldsymbol{x}_n^T \end{bmatrix} = \begin{bmatrix} x_{11} \cdots x_{1p} \\ \vdots \\ x_{n1} \cdots x_{np} \end{bmatrix}$$

A monotone, differentiable function g – called link function such that

$$g(\boldsymbol{\mu}_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

where  $\mu_i = E(Y_i)$ 

=

## The exponential family of distributions

# • The density function : $f(y) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right\}$

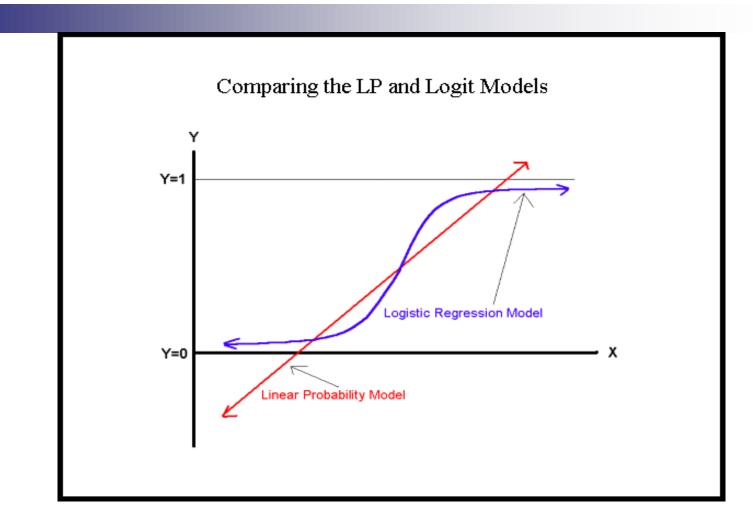
Θ: canonical parameter
 Φ: dispersion (or scale) parameter

## Generalized linear models

| Random<br>component | Link      | Linear<br>component | Model                  |
|---------------------|-----------|---------------------|------------------------|
| Normal              | Identity  | Continuous          | Regression             |
| Normal              | Identity  | Categorical         | Analysis of variance   |
| Normal              | Identity  | Mixed               | Analysis of covariance |
| Binomial            | Logit     | Mixed               | Logistic regression    |
| Poisson             | Log       | Mixed               | Loglinear analysis     |
| Polinomial          | Gen.logit | Mixed               | Polin.regr.            |
| Binary              | Log       | Mixed               | Rel.risk.regr.         |

### The model of binary logistic regression

Given *p* independent variables:  $\mathbf{x} = (x_1, x_2, ..., x_p)$  and a dependent variable *Y* with values 0 and 1. Let's denote  $P(Y=1|\mathbf{x}) = \pi(\mathbf{x})$ : the probability of success given  $\mathbf{x}$ . The model is


$$g(\boldsymbol{X}) = \ln \left[ \frac{\pi(\boldsymbol{X})}{1 - \pi(\boldsymbol{X})} \right] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

or

$$\pi(x) = \frac{e^{g(x)}}{1 + e^{g(x)}} = \frac{1}{1 + e^{-g(x)}}$$

g(x): logit transformation. G(x)=ln(OR). Properties:

- $\hfill\square$  It is a linear function of the parameters
- $\Box \quad -\infty < g(x) < +\infty$
- if  $\beta_0 + \beta_1 x = 0$ , then  $\pi(x) = .50$
- if  $\mathcal{B}_0 + \mathcal{B}_1 X$  is big, then  $\pi(X)$  is close to 1
- if  $\mathcal{B}_0 + \mathcal{B}_1 X$  is small, then  $\pi(X)$  is close to 0



### An Introduction to Logistic Regression

John Whitehead Department of Economics East Carolina University http://personal.ecu.edu/whiteheadj/data/logit/

# Multiple logistic regression

The independent variables can be categorical or continuous variables

$$g(\mathbf{x}) = \ln \left[ \frac{\pi(x)}{1 - \pi(x)} \right] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- Categorical variable encoding:
  - □ binary: 0-1
  - $\Box$  In case of *k* possible values, we form *k*-1 "dummy" variables.
    - Reference category encoding:
    - The variable has 3 possible values: white, black, other. The dummy variables are:

|       | D1 | D2 |
|-------|----|----|
| White | 0  | 0  |
| Black | 1  | 0  |
| Other | 0  | 1  |

# Interpretation of $\mathcal{B}_1$ in case of dichotomous independent variable

While x changes from 0 to 1, the change in logit is  $\beta_1$ 

The estimate of OR is  $exp(\beta_1)$ ,

$$g(x) = \ln\left[\frac{\pi(x)}{1 - \pi(x)}\right] = \beta_0 + \beta_1 x$$

$$g(1) - g(0) = (\beta_0 + \beta_1 \cdot 1) - (\beta_0 + \beta_1 \cdot 0) = \beta_1$$
  

$$g(1) - g(0) = \ln \frac{\pi(1)}{1 - \pi(1)} - \ln \frac{\pi(0)}{1 - \pi(0)} = \ln \frac{\frac{\pi(1)}{1 - \pi(1)}}{\frac{\pi(0)}{1 - \pi(0)}} = \ln(OR)$$

In case of several independent variables,  $exp(\beta_i)$ -s are "adjusted" ORs

## Fitting logistic regression models

- maximum likelihood method: maximum of the log likelihood -> solution of the likelihood equations by iterations.
- Testing for the significance of the coefficients
  - Wald test
  - □ Likelihood ratio test
  - Score test

## Testing for significance of the coefficients I. Wald test in case of one independent variable

H0: *B*<sub>1</sub>=0.

Test statistic: compare the maximum likelihood estimate of the slope parameter,  $\hat{\beta}$ , to an estimate of its standard error. The resulting ratio under the null hypothesis will follow a standard normal distribution.

$$W = \frac{\hat{\beta}_1}{\hat{S}_E(\hat{\beta}_1)}$$

Problem: the Wald test behaves in an aberrant manner, often failing to reject the null hypothesis when the coefficient was significant. (Hauck and Donner (1977, J. Am.Stat) – they recommended that likelihood ratio test be used).

Example

|      |          |     |      |        |    | 95.0% C.I. | for EXP(B) |       |       |  |
|------|----------|-----|------|--------|----|------------|------------|-------|-------|--|
|      |          | В   | S.E. | Wald   | df | Sig.       | Exp(B)     | Lower | Upper |  |
| Step | age      | 063 | .020 | 10.246 | 1  | .001       | .939       | .903  | .976  |  |
| 1    | Constant | 853 | .141 | 36.709 | 1  | .000       | .426       |       |       |  |

Variables in the Equation

a. Variable(s) entered on step 1: age.

$$W = \frac{-0.06324}{0.019756} = 3.201$$
  $W^2 = 10.24 \sim \chi^2$  distribution with 1 degrees of freedom

Interpretation of  $\beta_1$ : it is an estimated log odds ratio. While x changes from 0 to 1, the change in logit is  $\beta_1$ . But the meaningful change must be defined for a continuous variable.

## Testing for significance of the coefficients II. Likelihood ratio test in case of one independent variable

- Does the model that includes the variable in question tell us more about the outcome variable than the model that does not include that variable?
- In linear regression we use an ANOVA table, where we partition the total sum of squares into SS due to regression and residual SS.
- Here we use D=Deviance -2InL:
- Good fit: likelihood =1  $\rightarrow$  -2lnL=0
- Bad fit: likelihood =0  $\rightarrow$  -2lnL $\approx\infty$ .

The better the fit, the smallest is -2lnL.

Comparison of the change of D: D(with the variable) -D(without the variable) is distributed by  $\chi^2$  with 1 degrees of freedom

| Example.                  |                                          |
|---------------------------|------------------------------------------|
| Without the variable age: | -2InL= 871.675                           |
| With the variable age:    | -2InL= 864.706                           |
| Difference:               | 6.969 $\chi^2_{0.05,1}$ =3.841, p < 0.05 |

We need the variable "age"

# Testing possible interactions using likelihood ratio test

Example.

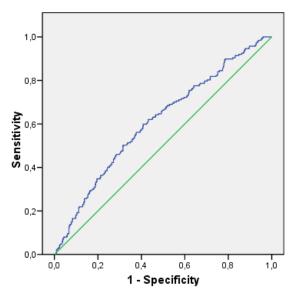
With variables sex and age: -2InL= 864.706 With sex, age and sex\*age: -2InL= 864.608 Difference: 0.098 p > 0.05

The model without interaction is as good as the model with the interaction -> we keep the simpler model

# Testing goodness of fit

- Pearson chi-square (Model-chi-square, deviance-D): This statistic tests the overall significance of the model. It is distributed as χ2, the degrees of freedom is the number of independent variables
- Pseudo R<sup>2</sup>: It is similar to the R<sup>2</sup> in the linear regression. It lies between 0 and 1.
- Hosmer-Lemeshow test
   If the result is not significant, the fit is good (???)
- Classification tables. Based on the predicted probabilities, classification of cases is possible. The "cut" point is generally 0.5.

|        |                            | Predicted |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |  |  |  |
|--------|----------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|--|--|--|
|        |                            |           | All complication the proc. or room the process of t | Percentage |         |  |  |  |
|        | Observed                   |           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes        | Correct |  |  |  |
| Step 1 | All complications during   | No        | 509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 135        | 79.0    |  |  |  |
|        | the proc. or in the r.room | Yes       | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65         | 34.8    |  |  |  |
|        | Overall Percentage         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 69.1    |  |  |  |


Classification Table<sup>®</sup>

specificity sensitivity

a. The cut value is .250

## **ROC** curves





Diagonal segments are produced by ties.

A plot of Sensitivity vs. 1–Specificity. In case of complete separation, the curve becomes an upper triangle. In case of complete equality, the cure becomes a line (green). Area under the curve can be calculated. The difference from 0.5 can be tested

#### Area Under the Curve

Test Result Variable(s): Predicted probability

|      |                         | Asy mptotic       |             | i% Confidence<br>rv al |
|------|-------------------------|-------------------|-------------|------------------------|
| Area | Std. Error <sup>a</sup> | Sig. <sup>b</sup> | Lower Bound | Upper Bound            |
| .610 | .023                    | .000              | .564        | .656                   |

The test result v ariable(s): Predicted probability has at least one tie between the positive actual state group and the negative actual state group. Statistics may be biased.

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

## Steps of model-building

- Choosing candidate variables
  - $\Box$  Univariate statistics (t-test,  $\chi 2$  test)
  - □ "candidate" variables: test result is p<0.25
  - Based on medical findings, some nonsignificant variables can be involved
- Testing the "importance" of variables
  - Wald test
  - likelihood ratio
  - stepwise regression
  - □ best subset
- Check the assumption of linearity in the logit
- Testing interactions
- Goodness of fit
- interpretation

## Possible problems

- Irrelevant variables in the model might cause poor model-fit
- Omitting important variables might cause bias in the estimation of coefficients
   Multicollinearity:
- When the independent variables are correlated, there are problems in estimating regression coefficients.
- The greater the multicollinearity, the greater the standard errors. Slight changes in model structure result in considerable changes in the magnitude or sign of parameter estimates.

$$\begin{array}{l} \begin{array}{c} \text{Relative risk regression}\\ \text{(log binomial regression)} \end{array}$$

$$g(x) = \ln[\pi(x)] = \beta_0 + \beta_1 x$$

$$g(1) - g(0) = (\beta_0 + \beta_1 \cdot 1) - (\beta_0 + \beta_1 \cdot 0) = \beta_1$$

$$g(1) - g(0) = \ln \pi(1) - \ln \pi(0) = \ln \frac{\pi(1)}{\pi(0)} = \ln(RR) \end{array}$$

Problem:

The estimated probability must be between 0 and 1, i.e.,  $\beta_0 + \beta_1 x \le 0$ . When the method does not converge, then we get a wrong estimation of the RR-s. In case of logistic regression there is no such problem

## **Overdispersion**

- In practice, count observations often exhibit variability exceeding that predicted by the binomial or Poisson. This phenomenon is called overdispersion. For example, the sample variance is greater then the sample mean. The reason of this phenomenon is generally the heterogeneity of data.
- Overdispersion does not occur in normal regression models (the mean and the variance are independent parameters), but in case of Poisson and binomial distribution the variance and the mean are not independent.

Evaluation of logistic regression model for data of Example 1.

## Univariate analysis: $\chi^2$ test or Mann-Whitney U-test.

### Children with recent URI \* All complications during the proc. or in the r.room Crosstabulation

|               |     |                                   | All complications during<br>the proc. or in the r.<br>room |         |        |
|---------------|-----|-----------------------------------|------------------------------------------------------------|---------|--------|
|               |     |                                   | No                                                         | Yes     | Total  |
| Children with | no  | Count                             | 492                                                        | 116     | 608    |
| recent URI    |     | % within Children with recent URI | 80.9%                                                      | (19.1%) | 100.0% |
|               | URI | Count                             | 152                                                        | 74      | 223    |
|               |     | % within Children with recent URI | 68.2%                                                      | (31.8%) | 100.0% |
| Total         |     | Count                             | 644                                                        | 187     | 831    |
|               |     | % within Children with recent URI | 77.5%                                                      | 22.5%   | 100.0% |

#### **Risk Estimate**

|                                                     |       | 95% Confidence<br>Interval |       |  |
|-----------------------------------------------------|-------|----------------------------|-------|--|
|                                                     | Value | Lower                      | Upper |  |
| Odds Ratio f or Children with recent URI (no / URI) | 1.981 | 1.401                      | 2.803 |  |
| For cohort All                                      |       |                            |       |  |

#### Table 2. Incidence of Respiratory Complications in the Two Groups of Children

|                                                   | No URI, % (n = 608) | URI, % (n = 223) | OR    | 95% Cl      | P Value   |
|---------------------------------------------------|---------------------|------------------|-------|-------------|-----------|
| Overall complications in the perioperative period |                     |                  |       |             |           |
| Laryngospasm                                      | 3.1                 | 7.6              | 2.558 | 1.305-5.016 | 0.007†    |
| Bronchospasm                                      |                     | 0.9              | _     | _           | 0.072     |
| Airway obstruction                                | 7.1                 | 6.3              | 0.880 | 0.472-1.642 | 0.759     |
| Oxygen desaturation                               | 11.4                | 19.3             | 1.863 | 1.228-2.825 | 0.004†    |
| Cough                                             | 7.5                 | 1 <u>7.</u> 9    | 2.730 | 1.728-4.313 | < 0.0001* |
| Overall‡                                          | (19.1)              | 17.9<br>(31.8)   | 1.981 | 1.401-2.803 | <0.0001*  |

# Logistic regression with one independent variable (URI)

Model Summary

| Step | -2 Log               | Cox & Snell | Nagelkerke |
|------|----------------------|-------------|------------|
|      | likelihood           | R Square    | R Square   |
| 1    | 871.675 <sup>a</sup> | .017        | .026       |

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

#### Variables in the Equation

|      |          |        |      |         |    |      |        | 95.0% C.I.for EXP(B) |       |
|------|----------|--------|------|---------|----|------|--------|----------------------|-------|
|      |          | В      | S.E. | Wald    | df | Sig. | Exp(B) | Lower                | Upper |
| Step | uri      | .684   | .177 | 14.926  | 1  | .000 | 1.981  | 1.401                | 2.803 |
| 1    | Constant | -1.445 | .103 | 195.969 | 1  | .000 | .236   |                      |       |

a. Variable(s) entered on step 1: uri.

#### Table 2. Incidence of Respiratory Complications in the Two Groups of Children

|                                                   | No URI, % (n = 608) | URI, % (n = 223) | OR    | 95% CI      | P Value   |
|---------------------------------------------------|---------------------|------------------|-------|-------------|-----------|
| Overall complications in the perioperative period |                     |                  |       |             |           |
| Laryngospasm                                      | 3.1                 | 7.6              | 2.558 | 1.305-5.016 | 0.007†    |
| Bronchospasm                                      |                     | 0.9              | _     | _           | 0.072     |
| Airway obstruction                                | 7.1                 | 6.3              | 0.880 | 0.472-1.642 | 0.759     |
| Oxygen desaturation                               | 11.4                | 19.3             | 1.863 | 1.228-2.825 | 0.004†    |
| Cough                                             | 7.5                 | 17.9             | 2.730 | 1.728-4.313 | < 0.0001* |
| Overall‡                                          | 19.1                | 31.8             | 1.981 | 1.401-2.803 | < 0.0001* |

# Logistic regression with two independent variables (URI and age)

#### Model Summary

| Step | -2 Log               | Cox & Snell | Nagelkerke |
|------|----------------------|-------------|------------|
|      | likelihood           | R Square    | R Square   |
| 1    | 864.706 <sup>a</sup> | .026        | .039       |

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Variables in the Equation

|      |          |        |       |        |    |      |         | 95.0% C.I.for EXP(B) |       | ] |             |
|------|----------|--------|-------|--------|----|------|---------|----------------------|-------|---|-------------|
|      |          | В      | S. E. | Wald   | df | Sig. | Exp(B)  | Lower                | Upper |   | Adjusted OR |
| Step | uri      | .598   | .180  | 10.996 | 1  | .001 | 1.818 • | 1.277                | 2.588 |   | Aujusted OK |
| 1    | age      | 052    | .020  | 6.735  | 1  | .009 | .949    | .912                 | .987  |   |             |
|      | Constant | -1.102 | .163  | 45.694 | 1  | .000 | .332    |                      |       |   |             |

a. Variable(s) entered on step 1: uri, age.

| Without the variable age: | -2InL= 871.675                                          |
|---------------------------|---------------------------------------------------------|
| With the variable age:    | -2InL= 864.706                                          |
| Difference:               | 6.969 χ <sup>2</sup> <sub>0.05,1</sub> =3.841, p < 0.05 |

We need the variable "age"

## Logistic regression with interaction

#### Model Summary

| Step | -2 Log               | Cox & Snell | Nagelkerke |
|------|----------------------|-------------|------------|
|      | likelihood           | R Square    | R Square   |
| 1    | 864.608 <sup>a</sup> | .026        | .039       |

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Variables in the Equation

|      |            |        |      |        |    |      |        | 95.0% C.I.f or EXP(B) |       |
|------|------------|--------|------|--------|----|------|--------|-----------------------|-------|
|      |            | В      | S.E. | Wald   | df | Sig. | Exp(B) | Lower                 | Upper |
| Step | uri        | .525   | .294 | 3.195  | 1  | .074 | 1.690  | .951                  | 3.006 |
| 1    | age        | 056    | .024 | 5.568  | 1  | .018 | .945   | .902                  | .991  |
|      | age by uri | .014   | .044 | .099   | 1  | .754 | 1.014  | .929                  | 1.106 |
|      | Constant   | -1.077 | .180 | 35.634 | 1  | .000 | .341   |                       |       |

a. Variable(s) entered on step 1: uri, age, age \* uri .

With variables sex and age: With sex, age and sex\*age: Difference: -2InL= 864.706 -2InL= 864.608 0.098 p > 0.05

The model without interaction is as good as the model with the interaction -> we keep the simpler model

## Logistic regression with several independent variables

Table 3. Odds Ratios and 95% Confidence Intervals for the Risk Factors Associated with the Occurrence of Perioperative Respiratory Adverse Events

|                        | Un    | ivariate | Multivar       | iate First Model | Multivaria     | Multivariate Final Model |  |  |
|------------------------|-------|----------|----------------|------------------|----------------|--------------------------|--|--|
|                        | OR    | CI       | OR             | CI               | OR             | CI                       |  |  |
| URI                    | 2.0*  | 1.4–2.8  | <b>1.777</b> † | 1.107-2.854      | <b>1.828</b> † | 1.3–2.6                  |  |  |
| Age                    | 0.9*  | 0.8-0.9  | 0.953+         | 0.915-0.992      | 0.95†          | 0.91-0.98                |  |  |
| ENT surgery            | 1.3   | 0.8-2.2  |                |                  |                |                          |  |  |
| Asthma                 | 1.19  | 0.8–1.8  |                |                  |                |                          |  |  |
| Nocturnal cough        | 1.20  | 0.7-1.9  |                |                  |                |                          |  |  |
| Allergy                | 0.95  | 0.6-1.5  |                |                  |                |                          |  |  |
| Passive smoking        | 0.89  | 0.6-1.4  |                |                  |                |                          |  |  |
| Clear runny secretions | 1.53  | 1.1-2.1  | 1.052          | 0.657-1.682      |                |                          |  |  |
| Green runny secretions | 1.79  | 1.0-3.2  | 1.465          | 0.748-2.869      |                |                          |  |  |
| Fever                  | 1.59  | 0.9-2.8  |                |                  |                |                          |  |  |
| Dry cough              | 1.26  | 0.8-2.0  |                |                  |                |                          |  |  |
| Moist cough            | 1.46  | 0.9-2.3  | 1.052          | 0.626-1.768      |                |                          |  |  |
| LMA size               | 0.62  | 0.5-0.9  |                |                  |                |                          |  |  |
| Reinforced LMA         | 1.18  | 0.7-2.0  |                |                  |                |                          |  |  |
| Lignocaine             | 0.69  | 0.4-1.1  | 0.702          | 0.443-1.113      |                |                          |  |  |
| Number of attempts     | 3.06* | 1.9–5.0  |                |                  |                |                          |  |  |
| Consultant             | 0.95  | 0.7-1.4  |                |                  |                |                          |  |  |
| Inhalational induction | 1.21  | 0.8–1.6  |                |                  |                |                          |  |  |
| Propofol induction     | 0.89  | 0.6–1.3  |                |                  |                |                          |  |  |
| Thiopentone induction  | 1.02  | 0.5-1.9  |                |                  |                |                          |  |  |
| Midazolam              | 1.35  | 0.8-2.2  |                |                  |                |                          |  |  |
| Opioid                 | 1.47* | 1.0-2.2* |                |                  |                |                          |  |  |
| Removal of LMA         |       |          |                |                  |                |                          |  |  |
| Deep vs. awake         | 0.70  | 0.3–1.5  |                |                  |                |                          |  |  |

\* P < 0.05 after the correction by step-down Bonferroni method. + P < 0.05, Wald test.

CI = confidence interval; ENT = ear, nose, and throat; LMA = laryngeal mask airway; OR = odds ratio; URI = upper respiratory tract infection.

## Correction of univariate p-values

|                                                   | No URI, % (n = 608) | URI, % (n = 223) | OR    | 95% CI       | P Value   |
|---------------------------------------------------|---------------------|------------------|-------|--------------|-----------|
| Overall complications in the perioperative period |                     |                  |       |              |           |
| Laryngospasm                                      | 3.1                 | 7.6              | 2.558 | 1.305-5.016  | 0.007†    |
| Bronchospasm                                      |                     | 0.9              |       | _            | 0.072     |
| Airway obstruction                                | 7.1                 | 6.3              | 0.880 | 0.472-1.642  | 0.759     |
| Oxygen desaturation                               | 11.4                | 19.3             | 1.863 | 1.228-2.825  | 0.004†    |
| Cough                                             | 7.5                 | 17.9             | 2.730 | 1.728-4.313  | < 0.0001* |
| Overall‡                                          | 19.1                | 31.8             | 1.981 | 1.401-2.803  | < 0.0001* |
| Intraoperative complications                      |                     |                  |       |              |           |
| Laryngospasm                                      | 3.5                 | 6.9              | 2.044 | 1.005-4.157  | 0.069     |
| Bronchospasm                                      |                     | 1.0              |       | —            | 0.073     |
| Airway obstruction                                | 4.7                 | 4.4              | 0.926 | 0.426-2.012  | 1.000     |
| Oxygen desaturation                               | 2.6                 | 5.0              | 1.972 | 0.861-4.513  | 0.107     |
| Cough                                             | 4.6                 | 8.9              | 2.008 | 1.071-3.766  | 0.034     |
| Overall‡                                          | 9.5                 | 15.2             | 1.713 | 1.063-2.760  | 0.035     |
| Complications in the recovery room                |                     |                  |       |              |           |
| Laryngospasm                                      | 0.3                 | 1.9              | 5.561 | 1.011-30.589 | 0.047     |
| Bronchospasm                                      |                     |                  | _     | _            | _         |
| Airway obstruction                                | 3.5                 | 3.4              | 0.966 | 0.402-2.319  | 1.000     |
| Oxygen desaturation                               | 10.3                | 18.3             | 1.944 | 1.248-3.027  | 0.005†    |
| Cough                                             | 4.6                 | 14.0             | 3.409 | 1.955-5.942  | < 0.0001* |
| Overall‡                                          | 14.7                | 25.4             | 1.978 | 1.342-2.916  | 0.001*    |

\* *P* < 0.05 after the correction by step-down Bonferroni method. † *P* < 0.08 after the correction by step-down Bonferroni method. ‡ Overall = percentage of individuals having at least one specific complication.

CI = confidence interval; OR = odds ratio; URI = upper respiratory tract infection.

Evaluation of logistic regression and relative regression models for data of Example 2.

Investigation of risk factors of respiratory complications in paediatric anaesthesia

- Background: Incidence of Adverse Respiratory Events in Children with Recent Upper Respiratory Tract Infections (URI) –Example 1. (Anesthesiology 2007; 107:714–9).
- Data: Outcome variables complications ( 5 types):
  - Bronchospasm
  - □ Laryngospasm
  - □ Cough
  - Desaturation
  - <95%Airway obstruction</p>
  - Overall
- Any of them might occur
  - □ at induction
  - □ during maintenance
  - □ On recovery the three together are called intraoperative compl.
  - PACU (recovery room) a 4 together are called perioperative complications

# **Risk factors**

- Characteristics of the patient
  - - Currently, <2 weeks, <4 weeks, none</li>
    - Runny nose (several categories), cough (dry/moist), fewer
  - □ wheezing
  - □ Rhinitis
  - Eczema
  - □ The same factors in the family
    - mother/father/brother/>1 relatives
- Characteristic of anaesthesia
  - Maintained by registrar or consultant
  - □ Induction of anaesthesia
  - Maintenance of anaesthesia
  - □ Airway management (face mask/LMA/ETT) further details
  - □ Timing
- Events at the recovery room (PACU)
- Original questionnaire <u>RESPIRATORY COMPLICATIONS without</u> <u>boxes.doc</u>

## First steps

Correcting mistakes in data base (! !)

- Univariate tests (all complications, all cases, too much)  $\chi^2$  tests and odds ratios
- For example, odds of a female for bronchospasm: 81:3661=0.022125
  - odds of a male

82:5472=0.01498

A male has 0.01498/0.022125=0.6765 times less odds

|                    |           |                 |              |        | _              | Overall p | p related to<br>the first<br>category | OR<br>(unadjust<br>ed) | 95%Cl,<br>lower | 95%Ci<br>upper |
|--------------------|-----------|-----------------|--------------|--------|----------------|-----------|---------------------------------------|------------------------|-----------------|----------------|
|                    |           | Crosstab        |              |        | <u> </u>       |           |                                       |                        |                 |                |
|                    |           |                 | Bronch<br>no | Yes    | Tatal          |           |                                       |                        |                 |                |
| sex                | female    | Count           | 3 661        | 81     | Total<br>3 742 | 0.015     |                                       | 0.677                  | 0.497           | 0.923          |
| SOX                | lomaio    | % within Bronch | 40.1%        | 49.7%  | 40.3%          | 0.010     |                                       | 0.077                  | 0.437           | 0.525          |
|                    | male      | Count           | 5 472        | 82     | 5 554          |           |                                       |                        |                 |                |
|                    |           | % within Bronch | 59.9%        | 50.3%  | 59.7%          |           |                                       |                        |                 |                |
| Total              |           | Count           | 9 133        | 163    | 9 296          |           |                                       |                        |                 |                |
|                    |           | % within Bronch | 100.0%       | 100.0% | 100.0%         |           |                                       |                        |                 |                |
| r                  |           | Crosstab        | Bronch       |        |                |           |                                       |                        |                 |                |
|                    |           |                 | no           | Yes    | Total          |           |                                       |                        |                 |                |
| When were the last | NONE      | Count           | 6 067        | 74     | 6 141          | 0.000     | 0.000                                 | 2.737                  | 1.854           | 4.042          |
| symptoms           |           | % within Bronch | 66.5%        | 45.4%  | 66.1%          |           | 0.000                                 | 3.236                  | 2.134           | 4.909          |
|                    | Currently | Count           | 1 198        | 40     | 1 238          |           | 0.373                                 | 1.281                  | 0.743           | 2.208          |
|                    | -         | % within Bronch | 13.1%        | 24.5%  | 13.3%          |           |                                       |                        |                 |                |
|                    | <2 weeks  | Count           | 836          | 33     | 869            |           |                                       |                        |                 |                |
|                    |           | % within Bronch | 9.2%         | 20.2%  | 9.4%           |           |                                       |                        |                 |                |
|                    | <4 weeks  | Count           | 1 024        | 16     | 1 040          |           |                                       |                        |                 |                |
|                    |           | % within Bronch | 11.2%        | 9.8%   | 11.2%          |           |                                       |                        |                 |                |

# **Unifactorial results**

## **Example laryngospasm**



## Laryngospasm – odds ratios

Overall incidence 3.5 %

Registrar vs. consultants 2.5 (1.9-3.4), p < 0.001



#### **Impact of different symptoms** 2-4 weeks Currently 2 weeks Current cold 0.4 3.2 4.3 2.0 2.1 Clear nose 1.1 (1.5-2.8), p<0.001 (1.5-3.0), p<0.001 (0.6-2.0), p=0.67 5.0 8.2 0.1 Green nose (5.5-12.3), p<0.001 (0.0-0.6), p=0.02 (3.2-7.9), p<0.001 2.2 Dry cough 2.3 0.5 (1.5-3.3), p<0.001 (1.4-3.6), p<0.001 (0.2-1.3), p=0.15 Moist cough 7.9 0.1 4.3 (0.0-0.6), p=0.01 (31-60)6.3 0.6 Fever 2.5(1.1-5.4), p=0.024 (3.8-10.5), p<0.001 (0.2-1.5), p=0.26

## **Medical history** – related odds ratios

1.0

Ever eczema Eczema < 12 months Rhinitis < 12 months

1.9 (1.5-2.4), p < 0.0012.0 (1.5-2.6), p < 0.0011.0 (0.7-1.4), p = 0.930

Ever asthma

1.5 (1.1-1.9), p = 0.006

 Wheezing episodes during last 12 months vs. none

 1-3
 1.6 (1.2-2.3), p = 0.005

 4-12
 3.1 (2.1-4.7), p < 0.001</td>

 >12
 3.4 (2.0-6.1), p < 0.001</td>

Wheezing during exercise Dry cough at night

**3.5** (2.7-4.6), p < 0.001 **4.2** (3.3-5.3), p < 0.001

### Multivariate analysis

- Given one binary outcome variable and a lot of independent variables (5-times)
- Model: INSTEAD OF a logistic regression relative risk regression (instead of a logit link log link – we get the estimation of the RR, not the OR)

# **Example.** y=bronchospasm (1=yes, 0=no) x=sex (0 female, 0 male). Logistic regression

#### **Omnibus Tests of Model Coefficients**

|        |       | Chi-square | df | Sig. |
|--------|-------|------------|----|------|
| Step 1 | Step  | 8.036      | 1  | .005 |
|        | Block | 8.036      | 1  | .005 |
|        | Model | 8.036      | 1  | .005 |

#### **Model Summary**

| Step | -2 Log                | Cox & Snell | Nagelkerke |
|------|-----------------------|-------------|------------|
|      | likelihood            | R Square    | R Square   |
| 1    | 1869.586 <sup>a</sup> | .001        | .005       |

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than 001

#### Variables in the Equation

|      |          |        |      |          |    |      |        | 95.0% C.I. | for EXP(B) |
|------|----------|--------|------|----------|----|------|--------|------------|------------|
|      |          | В      | S.E. | Wald     | df | Sig. | Exp(B) | Lower      | Upper      |
| Step | Sex      | 414    | .146 | 8.084    | 1  | .004 | .661   | .497       | .879       |
| 1ິ   | Constant | -3.627 | .103 | 1242.756 | 1  | .000 | .027   |            |            |

a. Variable(s) entered on step 1: Sex.

#### Classification Table<sup>a</sup>

|          |                    |                    | Predicted                  |                           |                       |  |  |
|----------|--------------------|--------------------|----------------------------|---------------------------|-----------------------|--|--|
| Observed |                    |                    |                            | spasm periop<br>1.00 v es | Percentage<br>Correct |  |  |
| Step 1   | Bronchospasm       | .00 no<br>1.00 yes | <u>.00 no</u><br>910<br>19 | 4 0                       | 100.0                 |  |  |
|          | Overall Percentage | 1.00 yes           | 19                         | 5 0                       | 97.9                  |  |  |

a. The cut value is .500

# **Example.** y=bronchospasm (1=yes, 0=no) x=sex (0 female, 0 male) + age. Logistic regression

#### **Omnibus Tests of Model Coefficients**

|        |       | Chi-square | df | Sig. |
|--------|-------|------------|----|------|
| Step 1 | Step  | 8.036      | 1  | .005 |
|        | Block | 8.036      | 1  | .005 |
|        | Model | 8.036      | 1  | .005 |

#### Model Summary

| Step | -2 Log                | Cox & Snell | Nagelkerke |
|------|-----------------------|-------------|------------|
|      | likelihood            | R Square    | R Square   |
| 1    | 1869.586 <sup>a</sup> | .001        | .005       |

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than .001.

#### **Omnibus Tests of Model Coefficients**

|   |        |       | Chi-square | df | Sig. |
|---|--------|-------|------------|----|------|
|   | Step 1 | Step  | 9.046      | 2  | .011 |
|   |        | Block | 9.046      | 2  | .011 |
| L |        | Model | 9.046      | 2  | .011 |

### LR:9.046-8.036=1.01

#### Model Summary

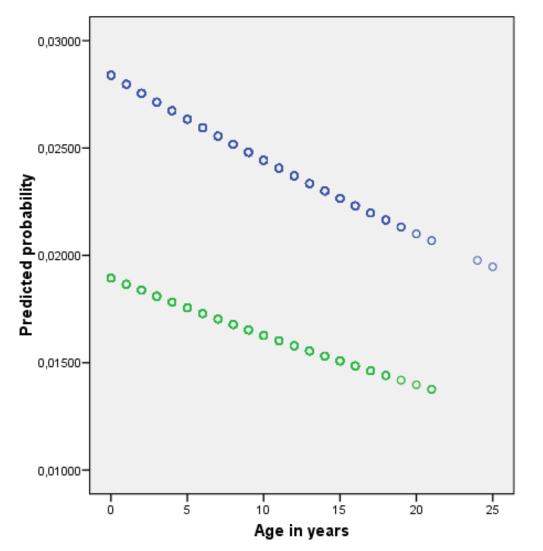
| Step | -2 Log                | Cox & Snell | Nagelkerke |
|------|-----------------------|-------------|------------|
|      | likelihood            | R Square    | R Square   |
| 1    | 1868.575 <sup>a</sup> | .001        | .005       |

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than .001.

### LR:1869.586-1868.575=1.01

#### Variables in the Equation

|      |          |        |      |         |    |      |        | 95.0% C.I.t | for EXP(B) |
|------|----------|--------|------|---------|----|------|--------|-------------|------------|
|      |          | В      | S.E. | Wald    | df | Sig. | Exp(B) | Lower       | Upper      |
| Step | Sex      | 415    | .146 | 8.112   | 1  | .004 | .661   | .497        | .879       |
| 1    | age      | 015    | .015 | .996    | 1  | .318 | .985   | .955        | 1.015      |
|      | Constant | -3.533 | .138 | 657.532 | 1  | .000 | .029   |             |            |


a Variable/a) entered on stan 1. Pay and

#### Classification Table<sup>a</sup>

|        |                    | Predicted |           |                     |                       |
|--------|--------------------|-----------|-----------|---------------------|-----------------------|
|        |                    |           | Bronchosp | Bronchospasm periop |                       |
|        | Observed           |           | .00 no    | 1.00 yes            | Percentage<br>Correct |
| Step 1 | Bronchospasm       | .00 no    | 9104      | 0                   | 100.0                 |
|        | periop             | 1.00 yes  | 193       | 0                   | .0                    |
|        | Overall Percentage |           |           |                     | 97.9                  |

a. The cut value is .500

### **Estimated probabilities**



Sex Ofemale Omale

### Example. y=bronchospasm (1=yes, 0=no) x=sex (0 female, 0 male) +age. Rel.risk. regression

**Omnibus Test**<sup>a</sup>

| Likelihood<br>Ratio |    |      |
|---------------------|----|------|
| Chi-Square          | df | Sig. |
| 9.021               | 2  | .011 |

Dependent Variable: Bronchospasm periop Model: (Intercept), Sex, age

a. Compares the fitted model against

#### **Parameter Estimates**

|             |                |            | 95% Wald Confidence<br>Interval |        | Hypothesis Test |     |      | 95% Wald (<br>Interval f            |       |        |
|-------------|----------------|------------|---------------------------------|--------|-----------------|-----|------|-------------------------------------|-------|--------|
| Dananatan   | E E            | Otal Error | 1                               |        | Wald            | -14 | 0 a  | <b>F</b> <sub>1</sub> , <b>(D</b> ) | 1     | Linnen |
| Parameter   | В              | Std. Error | Lower                           | Upper  | Chi-Square      | df  | Sig. | Exp(B)                              | Lower | Upper  |
| (Intercept) | -3.563         | .1342      | -3.826                          | -3.300 | 704.838         | 1   | .000 | .028                                | .022  | .037   |
| [Sex=1]     | 405            | .1424      | 684                             | 126    | 8.088           | 1   | .004 | .667                                | .505  | .882   |
| [Sex=0]     | 0 <sup>a</sup> |            |                                 |        |                 |     |      | 1                                   |       |        |
| age         | 015            | .0152      | 045                             | .015   | .970            | 1   | .325 | .985                                | .956  | 1.015  |
| (Scale)     | 1 <sup>b</sup> |            |                                 |        |                 |     |      |                                     |       |        |

Dependent Variable: Bronchospasm periop Model: (Intercept), Sex, age

a. Set to zero because this parameter is redundant.

b. Fixed at the displayed value.

#### 95.0% C.I.f or EXP(B) В S.E. Wald df Sig. Exp(B) Lower Upper Step Sex -.415 .146 8.112 1 .004 .661 .497 .879 age -.015 .015 .996 1 .318 .985 .955 1.015 657.532 Constant -3.533 .138 .000 .029 1

Variables in the Equation

a. Variable(s) entered on step 1: Sex, age.

### Log. regr.

### Rel.riks. reg



# The phenomenon of multicollinearity (example from another study)

### **Univariate logistic regressions**

| Variable              | Code  | Coeff | St.Err. | Wald  | df | р     |
|-----------------------|-------|-------|---------|-------|----|-------|
| No. of oocytes        | OOCYT | 0.052 | 0.019   | 7.742 | 1  | 0.005 |
| No. of mature oocytes | MII   | 0.066 | 0.022   | 8.687 | 1  | 0.003 |

### **Multivariate model (variables together)**

| Variable              | Code  | Coeff | St.Err. | Wald  | df | р     |
|-----------------------|-------|-------|---------|-------|----|-------|
| No. of oocytes        | OOCYT | 0.011 | 0.045   | 0.063 | 1  | 0.802 |
| No. of mature oocytes | MI    | 0.053 | 0.054   | 0.991 | 1  | 0.320 |

### Simplifications

- We collapsed the last three complications, so we performed only 3 multivariate modelling
- We performed multivariate analysis only for the "overall" complication
- The problem of multicollinearity we had a lot of variable expressing the same thing. The physician could not decide which is more important.

### **Factor analysis**

- We performed factor analysis based on almost every independent variables.
- We have got reasonable factors.
- Instead of producing new artificial variables by factor analysis, we collapsed original variables belonging to the factors using the "or" logical operator. In multivariate models, age, gender, hayfever, airway management (TT, LMA or face mask) and the new collapsed variables (airway sensitivity, eczema, family history and anaesthesia) were examined.
  - Airwsusc1: wheezing>3 times or asthmaexercise or dry night cough or cold<2 weeks
  - □ Familyw: rhinitis or eczema or asthma or smoke int he family (>2 persons)
  - □ Anaest: Registrar or change anaesth or induction anaest.
- We decided to use the combined variables variables to examine the following complications:
   (1) Laryngospasm periop, (2) Brochospasm periop, (3) all others periop.
- Details: <u>collapse.doc</u>

|                                   |      |      | Component |      |      |
|-----------------------------------|------|------|-----------|------|------|
|                                   | 1    | 2    | 3         | 4    | 5    |
| BHR at exercise                   | .824 |      |           |      |      |
| dry night cough                   | .784 |      | .153      |      |      |
| Wheezing >3 attacks               | .722 |      |           |      |      |
| eczema last 12 months             |      | .922 |           |      |      |
| ever eczema                       | .170 | .897 |           |      |      |
| Rhinitis >2 persons in the family |      |      | .714      |      |      |
| Eczema >2 persons in the family   |      |      | .664      |      |      |
| Asthma >2 persons in the family   | .123 |      | .660      |      |      |
| indanæst2                         |      |      |           | .735 | 139  |
| Cold <2weeks                      |      |      | .108      | .562 |      |
| ENT                               | .125 |      |           | .334 |      |
| Airway management who?            |      |      |           |      | .712 |
| changeofanaesthetist              |      |      |           | .351 | .544 |
| Smoke Mum and Dad                 |      |      | .135      | 120  | .522 |

#### Rotated Component Matrix<sup>a</sup>

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

### Simplifications

- Simplifications of variables where possible (worse scenario based on univariate statistics)
  - □ Asthma in the family, >2 persons
  - □ Hayfever in the family, >2 persons
  - □ Eczema in the family, >2 persons
  - □ Smoking in the family, Mother and Father
- Upper respiratory tract infection (URI) <2 weeks:</p>
  - □ calles also positive respiratory history or airway susceptibility

|                      |     | althy<br>7041 | Positive respirato<br>n=2250 |                | RR          | 95%       | бСI                   | p-value   | Absolute<br>risk<br>reduction | 95%    | 6 CI   |
|----------------------|-----|---------------|------------------------------|----------------|-------------|-----------|-----------------------|-----------|-------------------------------|--------|--------|
|                      |     |               | Overall co                   | mplications i  | in the peri | operative | e period <sup>2</sup> |           |                               |        |        |
| Bronchospasm         | 52  | 0.7%          | 141                          | 6.3%           | 8.463       | 6.179     | 11.590                | <0.0001*  | 5.51%                         | 4.49%  | 6.53%  |
| Laryngospasm         | 151 | 2.1%          | 200                          | 8.9%           | 4.134       | 3.365     | 5.079                 | <0.0001*  | 6.72%                         | 5.50%  | 7.94%  |
| Cough                | 319 | 4.5%          | 368                          | 16.3%          | 3.600       | 3.123     | 4.151                 | <0.0001*  | 11.78%                        | 10.18% | 13.38% |
| Desaturation <95%    | 455 | 6.5%          | 464                          | 20.6%          | 3.183       | 2.822     | 3.590                 | <0.0001*  | 14.11%                        | 12.34% | 15.87% |
| Airway obstruction   | 178 | 2.5%          | 154                          | 6.8%           | 2.700       | 2.188     | 3.333                 | <0.0001*  | 4.30%                         | 3.19%  | 5.40%  |
| Overall <sup>3</sup> | 693 | 9.8%          | 699                          | 31.0%          | 3.148       | 2.866     | 3.457                 | < 0.0001* | 21.14%                        | 19.11% | 23.17% |
|                      |     |               |                              | Intraoperati   | ive compli  | cations   |                       |           |                               |        |        |
| Bronchospasm         | 30  | 0.4%          | 133                          | 5.9%           | 13.835      | 9.336     | 20.501                | <0.0001*  | 5.47%                         | 4.49%  | 6.45%  |
| Laryngospasm         | 142 | 2.0%          | 180                          | 8.0%           | 3.956       | 3.191     | 4.904                 | <0.0001*  | 5.96%                         | 4.80%  | 7.13%  |
| Cough                | 267 | 3.8%          | 286                          | 12.7%          | 3.343       | 2.849     | 3.922                 | <0.0001*  | 8.88%                         | 7.44%  | 10.33% |
| Desaturation <95%    | 373 | 5.3%          | 389                          | 17.2%          | 3.254       | 2.847     | 3.721                 | <0.0001*  | 11.94%                        | 10.30% | 13.59% |
| Airway obstruction   | 130 | 1.8%          | 136                          | 6.0%           | 3.265       | 2.579     | 4.132                 | <0.0001*  | 4.18%                         | 3.15%  | 5.21%  |
| Overall <sup>3</sup> | 584 | 8.3%          | 595                          | 26.4%          | 3.179       | 2.866     | 3.527                 | <0.0001*  | 18.08%                        | 16.15% | 20.01% |
|                      |     |               | C                            | omplications i | in the reco | very room |                       |           |                               |        |        |
| Bronchospasm         | 19  | 0.3%          | 68                           | 3.0%           | 11.168      | 6.731     | 18.531                | <0.0001*  | 2.74%                         | 2.03%  | 3.46%  |
| Laryngospasm         | 77  | 1.1%          | 91                           | 4.0%           | 3.688       | 2.733     | 4.977                 | <0.0001*  | 2.94%                         | 2.09%  | 3.79%  |
| Cough                | 156 | 2.2%          | 162                          | 7.2%           | 3.241       | 2.614     | 4.017                 | <0.0001*  | 4.96%                         | 3.85%  | 6.08%  |
| Desaturation <95%    | 163 | 2.3%          | 168                          | 7.4%           | 3.216       | 2.607     | 3.969                 | <0.0001*  | 5.13%                         | 3.99%  | 6.27%  |
| Airway obstruction   | 39  | 0.6%          | 39                           | 1.7%           | 3.121       | 2.007     | 4.852                 | <0.0001*  | 1.17%                         | 0.61%  | 1.74%  |
| Stridor              | 28  | 0.4%          | 30                           | 1.4 %          | 3.344       | 2.002     | 5.584                 | <0.0001*  | 0.93%                         | 0.44%  | 1.43%  |
| Overall <sup>3</sup> | 290 | 4.1%          | 307                          | 13.6%          | 3.303       | 2.834     | 3.851                 | < 0.0001* | 9.49%                         | 8.00%  | 10.98% |

Table 2. Incidence of respiratory adverse events in the 2 groups of children.

<sup>1</sup>Positive respiratory history: URI<2 weeks or wheezing at exercise or > 3 times wheezing during last 12 months or nocturnal dry cough

<sup>2</sup>Intraoperative complications + PACU

<sup>3</sup>Bronchospasm or Laryngospasm or Cough or Desaturation <95% or Airway obstruction

\* p<0.0001 after the correction by step-down Bonferroni method

Table 3 a Relative risk and 95% confidence interval (CI) for the risk factors associated with the occurrence for perioperative bronchospasm.

| Variable                                                           | Univari | ate            |       |                | Multiva | riate |       |       |
|--------------------------------------------------------------------|---------|----------------|-------|----------------|---------|-------|-------|-------|
|                                                                    | р       | RR             | 95%CI |                | р       | RR    | 95%CI |       |
| A ===                                                              | 0.005   | 0.005          | 0.050 | 1.015          |         |       |       |       |
| Age                                                                | 0.325   | 0.985<br>0.667 | 0.956 | 1.015<br>0.882 | -       | -     | -     | -     |
| Gender                                                             | 0.004   |                | 0.505 |                |         |       |       |       |
| Hayfever                                                           | 0.000   | 2.915          | 2.153 | 3.947          |         |       |       |       |
| Upper respiratory tract infection (URI) <2 weeks                   | 0.000   | 2.146          | 1.498 | 3.075          |         |       |       |       |
| Wheezing at exercise                                               | 0.000   | 7.730          | 5.870 | 10.178         |         |       |       |       |
| Wheezing >3 times in the last 12 months                            | 0.000   | 7.168          | 5.307 | 9.680          |         |       |       |       |
| Nocturnal dry cough                                                | 0.000   | 10.510         | 7.932 | 13.927         |         |       |       |       |
| Airway sensitivity                                                 | 0.000   | 8.463          | 6.179 | 11.590         | 0.000   | 5.653 | 4.089 | 7.816 |
|                                                                    |         |                |       |                |         |       |       |       |
| Eczema in the last 12 months                                       | 0.000   | 3.158          | 2.359 | 4.227          |         |       |       |       |
| Ever eczema                                                        | 0.000   | 4.575          | 3.444 | 6.077          |         |       |       |       |
| Eczema                                                             | 0.000   | 4.533          | 3.416 | 6.016          | 0.000   | 2.601 | 1.950 | 3.470 |
|                                                                    |         |                |       |                |         |       |       |       |
| Asthma in the family, >2 persons                                   | 0.000   | 4.415          | 3.082 | 6.325          |         |       |       |       |
| Hayfever in the family, >2 persons                                 | 0.000   | 3.753          | 2.426 | 5.808          |         |       |       |       |
| Eczema in the family, >2 persons                                   | 0.028   | 2.190          | 1.089 | 4.401          |         |       |       |       |
| Smoking in the family, Mother and<br>Father                        | 0.000   | 2.603          | 1.894 | 3.576          |         |       |       |       |
| Family history                                                     | 0.000   | 2.932          | 2.212 | 3.887          | 0.000   | 1.863 | 1.413 | 2.458 |
| Airway managed by registrar vs.<br>pediatric anesthesia consultant | 0.000   | 3.847          | 2.473 | 5.984          |         |       |       |       |
| Inhalational induction of anesthesia                               | 0.000   | 2.381          | 1.791 | 3.167          |         |       |       |       |
| Change of anesthesiologist during airway management                | 0.000   | 4.094          | 2.646 | 6.335          |         |       |       |       |
| Anesthesia                                                         | 0.000   | 3.872          | 2.163 | 6.929          | 0.000   | 3.078 | 1.727 | 5.484 |
|                                                                    |         |                |       |                |         |       |       |       |
| ENT surgery                                                        | 0.043   | 1.458          | 1.012 | 2.101          | -       | -     | -     | -     |
| Face mask vs. laryngeal mask (LMA)                                 | 0.118   | 1.933          | 0.846 | 4.418          | 0.304   | 1.538 | 0.677 | 3.493 |
| Face mask vs. tracheal tube (TT)                                   | 0.000   | 5.105          | 2.252 | 11.574         | 0.002   | 3.523 | 1.564 | 7.937 |

### Table 3 b Relative risk and 95% confidence interval (CI) for the risk factors associated with the occurrence for perioperative aryngospasm

| Variable                                                        | Univar | iate   |       |        | Multiva | riate |       |        |  |
|-----------------------------------------------------------------|--------|--------|-------|--------|---------|-------|-------|--------|--|
|                                                                 | р      | RR     | 95%CI |        | Р       | RR    | 95%CI |        |  |
|                                                                 |        |        |       |        |         |       |       |        |  |
| age                                                             | 0.000  | 0.894  | 0.871 | 0.918  | 0.000   | 0.903 | 0.879 | 0.926  |  |
| Gender                                                          | 0.038  | 0.805  | 0.655 | 0.988  |         |       |       |        |  |
| Hayfever                                                        | 0.820  | 1.036  | 0.762 | 1.409  |         |       |       |        |  |
| Upper respiratory tract infection (URI) <2 weeks                | 0.000  | 3.341  | 2.657 | 4.202  |         |       |       |        |  |
| Wheezing at exercise                                            | 0.000  | 3.279  | 2.605 | 4.128  |         |       |       |        |  |
| Wheezing >3 times in the last 12 months                         | 0.000  | 2.644  | 1.955 | 3.577  |         |       |       |        |  |
| Nocturnal dry cough                                             | 0.000  | 3.973  | 3.224 | 4.897  |         |       |       |        |  |
| Airway sensitivity                                              | 0.000  | 4.134  | 3.365 | 5.079  | 0.000   | 3.261 | 2.654 | 4.008  |  |
|                                                                 |        |        |       |        |         |       |       |        |  |
| Eczema in the last 12 months                                    | 0.000  | 1.912  | 1.507 | 2.426  |         |       |       |        |  |
| Ever eczema                                                     | 0.000  | 1.848  | 1.493 | 2.288  |         |       |       |        |  |
| Eczema                                                          | 0.000  | 1.917  | 1.553 | 2.365  | -       | -     | -     | -      |  |
|                                                                 |        |        |       |        |         |       |       |        |  |
| Asthma in the family, >2 persons                                | 0.000  | 3.767  | 2.877 | 4.932  |         |       |       |        |  |
| Rhinitis in the family, >2 persons                              | 0.000  | 3.108  | 2.222 | 4.347  |         |       |       |        |  |
| Eczema in the family, >2 persons                                | 0.000  | 3.127  | 2.093 | 4.671  |         |       |       |        |  |
| Smoking in the family, Mother and Father                        | 0.000  | 3.005  | 2.403 | 3.758  |         |       |       |        |  |
| Family history                                                  | 0.000  | 3.391  | 2.765 | 4.158  | 0.000   | 2.571 | 2.101 | 3.146  |  |
| Airway managed by registrer                                     |        |        |       |        |         |       |       |        |  |
| Airway managed by registrar vs. pediatric anesthesia consultant | 0.000  | 2.353  | 1.791 | 3.091  |         |       |       |        |  |
| Inhalational induction of anesthesia                            | 0.000  | 3.202  | 2.574 | 3.984  |         |       |       |        |  |
| Change of anesthesiologist during                               | 0.000  | 4.479  | 3.310 | 6.061  |         |       |       |        |  |
| airway management                                               | 0.000  | 4.479  | 3.310 | 0.001  |         |       |       |        |  |
| Anesthesia                                                      | 0.000  | 4.248  | 2.713 | 6.652  | 0.000   | 3.098 | 1.985 | 4.836  |  |
|                                                                 |        |        |       |        |         |       |       |        |  |
| ENT surgery                                                     | 0.000  | 1.853  | 1.446 | 2.374  | 0.042   | 1.293 | 1.01  | 1.656  |  |
| Face mask vs. laryngeal mask (LMA)                              | 0.000  | 6.716  | 2.501 | 18.036 | 0.001   | 5.227 | 1.954 | 13.985 |  |
| Face mask vs. tracheal tube (TT)                                | 0.000  | 11.629 | 4.326 | 31.260 | 0.000   | 7.572 | 2.825 | 20.295 |  |

Table 3 c Relative risk and 95% confidence interval (CI) for the risk factors associated with the occurrence of perioperative cough, desaturation and airway obstruction.

| Variable                                                           | Univari | iate  |       |       | Multivar | iate  |       |       |
|--------------------------------------------------------------------|---------|-------|-------|-------|----------|-------|-------|-------|
|                                                                    | р       | RR    | 95%CI |       | р        | RR    | 95%CI |       |
| Age                                                                | 0.000   | 0.941 | 0.930 | 0.952 | 0.000    | 0.954 | 0.943 | 0.964 |
| Gender                                                             | 0.744   | 1.018 | 0.917 | 1.129 |          |       |       |       |
| Hayfever                                                           | 0.000   | 1.382 | 1.207 | 1.581 |          |       |       |       |
| Upper respiratory tract infection (URI) <2 weeks                   | 0.000   | 1.973 | 1.734 | 2.244 |          |       |       |       |
| Wheezing at exercise                                               | 0.000   | 3.043 | 2.732 | 3.390 |          |       |       |       |
| Wheezing >3 times in the last 12 months                            | 0.000   | 2.572 | 2.236 | 2.958 |          |       |       |       |
| Nocturnal dry cough                                                | 0.000   | 3.443 | 3.118 | 3.803 |          |       |       |       |
| Airway sensitivity                                                 | 0.000   | 3.048 | 2.761 | 3.366 | 0.000    | 2.371 | 2.142 | 2.624 |
|                                                                    |         |       |       | -     | · · ·    |       |       |       |
| Eczema in the last 12 months                                       | 0.000   | 1.887 | 1.681 | 2.118 |          |       |       |       |
| Ever eczema                                                        | 0.000   | 1.770 | 1.592 | 1.967 |          |       |       |       |
| Eczema                                                             | 0.000   | 1.824 | 1.644 | 2.023 | 0.000    | 1.254 | 1.138 | 1.382 |
|                                                                    |         |       |       |       |          |       |       |       |
| Asthma in the family, >2 persons                                   | 0.000   | 2.551 | 2.206 | 2.951 |          |       |       |       |
| Rhinitis in the family, >2 persons                                 | 0.000   | 2.298 | 1.919 | 2.751 |          |       |       |       |
| Eczema in the family, >2 persons                                   | 0.000   | 3.023 | 2.499 | 3.658 |          |       |       |       |
| Smoking in the family, Mother and Father                           | 0.000   | 1.950 | 1.728 | 2.200 |          |       |       |       |
| Family history                                                     | 0.000   | 2.086 | 1.879 | 2.315 | 0.000    | 1.545 | 1.403 | 1.701 |
| Airway managed by registrar vs.<br>pediatric anesthesia consultant | 0.000   | 1.932 | 1.698 | 2.199 |          |       |       |       |
| Inhalational induction of anesthesia                               | 0.000   | 1.971 | 1.779 | 2.183 |          |       |       |       |
| Change of anesthesiologist during<br>airway managment              | 0.000   | 4.483 | 3.978 | 5.053 |          |       |       |       |
| Anesthesia                                                         | 0.000   | 2.168 | 1.827 | 2.572 | 0.000    | 1.797 | 1.521 | 2.124 |
|                                                                    |         |       |       | -     |          |       |       |       |
| ENT surgery                                                        | 0.000   | 1.884 | 1.673 | 2.121 | 0.080    | 1.098 | 0.989 | 1.219 |
| Face mask vs. laryngeal mask (LMA)                                 | 0.009   | 1.440 | 1.096 | 1.892 | 0.169    | 1.207 | 0.923 | 1.580 |
| Face mask vs. tracheal tube (TT)                                   | 0.000   | 3.757 | 2.873 | 4.913 | 0.000    | 2.703 | 2.073 | 3.525 |

|                                                         | Univariate |            |           |            |                  |         | Multivariate (n=925 | 6)       |
|---------------------------------------------------------|------------|------------|-----------|------------|------------------|---------|---------------------|----------|
|                                                         | Yes        |            | No        |            | RR (95% CI)      | p value | RR (95% CI)         | p value  |
|                                                         | Total      | Value      | Total     | Value      | -                |         |                     |          |
| Age                                                     | 4.95 (4.6  | 57)        | 6-41 (4-8 | 1)         | 0-94 (0-93-0-95) | <0.0001 | 0-95 (0-94-0-96)    | <0.0001  |
| Male                                                    | 5554       | 767 (14%)  | 3743      | 508 (14%)  | 1.02 (0.92-1.13) | 0.74    |                     | -        |
| Hayfever                                                | 1163       | 209 (18%)  | 8088      | 1052 (13%) | 1-38 (1-21-1-58) | <0.0001 |                     | -        |
| Positive respiratory history                            |            |            |           |            |                  |         |                     |          |
| Upper respiratory tract infection<br><2 weeks           | 869        | 215 (25%)  | 8420      | 1056 (13%) | 1-97 (1-73-2-24) | <0.0001 | **                  |          |
| Wheezing at exercise                                    | 872        | 306 (35%)  | 8386      | 967 (12%)  | 3-04 (2-73-3-39) | <0.0001 |                     | -        |
| Wheezing > 3 times in past 12 months                    | 478        | 156 (33%)  | 8819      | 1119 (13%) | 2-57 (2-24-2-96) | <0.0001 |                     | -        |
| Nocturnal dry cough                                     | 1161       | 421 (36%)  | 8100      | 853 (11%)  | 3-44 (3-12-3-80) | <0.0001 | -                   | -        |
| Any of the above                                        | 2256       | 630 (28%)  | 7041      | 645 (9%)   | 3-05 (2-76-3-37) | <0.0001 | 2-37 (2-14-2-62)    | <0.0001* |
| Eczema                                                  |            |            |           |            |                  |         |                     |          |
| In the past 12 months                                   | 1307       | 300 (23%)  | 7942      | 966 (12%)  | 1-89 (1-68-2-12) | <0.0001 | -                   | -        |
| Ever (excluding past 12 months)                         | 2181       | 442 (20%)  | 7038      | 806 (11%)  | 1.77 (1.59-1.97) | <0.0001 | -                   | -        |
| Any of the above                                        | 2235       | 465 (21%)  | 7021      | 801 (11%)  | 1-82 (1-64-2-02) | <0.0001 | 1-25 (1-14-1-38)    | <0.0001  |
| Family history                                          |            |            |           |            |                  |         |                     |          |
| Asthma in ≥2 family members                             | 571        | 160 (28%)  | 8040      | 883 (11%)  | 2-55 (2-21-2-95) | <0.0001 | -                   | -        |
| Rhinitis in≥2 family members                            | 349        | 96 (28%)   | 8336      | 998 (12%)  | 2-30 (1-92-2-75) | <0.0001 | -                   | -        |
| Eczerna in ≥2 family members                            | 210        | 75 (36%)   | 8507      | 1005 (12%) | 3.02 (2.50-3.66) | <0.0001 | -                   | -        |
| Both parents smokers                                    | 1075       | 259 (24%)  | 8222      | 1016 (12%) | 1.95 (1.73-2.20) | <0.0001 | -                   | -        |
| Any of the above                                        | 1808       | 427 (24%)  | 7489      | 848 (11%)  | 2.09 (1.88-2.32) | <0.0001 | 1.55 (1.40-1.70)    | <0.0001  |
| Anaesthesia                                             |            |            |           |            |                  |         |                     |          |
| Airway managed by registrar                             | 6219       | 1015 (16%) | 3078      | 260 (8%)   | 1.93 (1.70-2.20) | <0.0001 | -                   |          |
| Inhalational induction of anaesthesia                   | 3597       | 707 (20%)  | 5686      | 567 (10%)  | 1-97 (1-78-2-18) | <0.0001 |                     |          |
| Change of anaesthesiologist during<br>airway management | 269        | 150 (56%)  | 9021      | 1122 (12%) | 4-48 (3-98-5-05) | <0.0001 |                     |          |
| Any of the above                                        | 7398       | 1140 (15%) | 1899      | 135 (7%)   | 2-17 (1-83-2-57) | <0.0001 | 1.80 (1.52-2.12)    | <0.0001* |
| Type of surgery                                         |            |            |           |            |                  |         |                     |          |
| Otolaryngology                                          | 1189       | 276 (23%)  | 8108      | 999 (12%)  | 1.88 (1.67-2.12) | <0.0001 | 1.10 (0.99-1.22)    | 0-080    |
| Airway management device used                           |            |            |           |            |                  |         |                     |          |
| Laryngeal mask vs face mask                             | 5586       | 520 (9%)   | 820       | 53 (6%)    | 1-44 (1-10-1-89) | 0.009   | 1.21 (0.92-1.58)    | 0-17     |
| Tracheal tube vs face mask                              | 2891       | 702 (24%)  | 820       | 53 (6%)    | 3-76 (2-87-4-91) | <0.0001 | 2.70 (2.07-3.53)    | <0.0001* |

Data are mean (SD) or number (%). RR-relative risk. \* p<0-0001 after correction by the step-down Bonferroni method. †p=0-0003 after correction.

Table 7: Risk factors associated with perioperative cough, desaturation, or airway obstruction

### SPSS command

GENLIN Bronchp (REFERENCE=FIRST) BY Airwsusc1 Ecz Familyw anaest airwman1 airwman2 (ORDER=DESCENDING) /MODEL Airwsusc1 Familyw Ecz anaest airwman1 airwman2 INTERCEPT=YES DISTRIBUTION=BINOMIAL LINK=LOG /CRITERIA METHOD=Fisher(1) SCALE=1 COVB=MODEL MAXITERATIONS=100 MAXSTEPHALVING=5 PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-012 ANALYSISTYPE=3 CILEVEL=95 LIKELIHOOD=FULL /MISSING CLASSMISSING=EXCLUDE /PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION(EXPONENTIATED) HISTORY(1).

#### Iteration History

|           |                     |               |                             |             |               |              | Para       | ameter        |              |              |         |
|-----------|---------------------|---------------|-----------------------------|-------------|---------------|--------------|------------|---------------|--------------|--------------|---------|
|           |                     | Number of     |                             |             | [Airwsusc1=1. | [Family w=1. |            |               | [airwman1=1. | [airwman2=1. |         |
| Iteration | Update Type         | Step-halvings | Log Likelihood <sup>a</sup> | (Intercept) | 00]           | 00]          | [Ecz=1.00] | [Anaest=1.00] | 00]          | 00]          | (Scale) |
| 0         | Initial             | 0             | -1622.970                   | -2.603609   | .586187       | .241612      | .323985    | .207150       | .027234      | .265989      | 1       |
| 1         | Scoring             | 0             | -979.984                    | -3.725293   | .760321       | .313236      | .435436    | .299653       | .062280      | .406510      | 1       |
| 2         | Newton              | 0             | -810.400                    | -4.939239   | 1.081661      | .441552      | .632300    | .495755       | .135855      | .664498      | 1       |
| 3         | Newton              | 0             | -771.490                    | -6.101388   | 1.459448      | .569899      | .844339    | .792959       | .257608      | .987343      | 1       |
| 4         | Newton              | 0             | -766.149                    | -6.833161   | 1.682051      | .617562      | .941553    | 1.038349      | .380784      | 1.198677     | 1       |
| 5         | Newton              | 0             | -765.968                    | -7.026670   | 1.730405      | .622326      | .955653    | 1.118692      | .427035      | 1.255880     | 1       |
| 6         | Newton              | 0             | -765.968                    | -7.037537   | 1.732235      | .622393      | .956000    | 1.124206      | .430231      | 1.259285     | 1       |
| 7         | Newton              | 0             | -765.968                    | -7.037571   | 1.732237      | .622393      | .956001    | 1.124226      | .430241      | 1.259296     | 1       |
| 8         | Newton <sup>b</sup> | 0             | -765.968                    | -7.037571   | 1.732237      | .622393      | .956001    | 1.124226      | .430241      | 1.259296     | 1       |

Redundant parameters are not displayed. Their values are always zero in all iterations. Dependent Variable: Bronchospasm periop

Model: (Intercept), Airwsusc1, Family w. Ecz, Anaest, airwman1, airwman2

a. The full log likelihood function is displayed.

b. All convergence criteria are satisfied.

#### Goodness of Fit<sup>b</sup>

|                                          | Value    | df | Value/df |
|------------------------------------------|----------|----|----------|
| Deviance                                 | 51.168   | 41 | 1.248    |
| Scaled Deviance                          | 51.168   | 41 |          |
| Pearson Chi-Square                       | 56.254   | 41 | 1.372    |
| Scaled Pearson<br>Chi-Square             | 56.254   | 41 |          |
| Log Likelihood <sup>a</sup>              | -765.968 |    |          |
| Akaike's Information<br>Criterion (AIC)  | 1545.936 |    |          |
| Finite Sample<br>Corrected AIC (AICC)    | 1548.736 |    |          |
| Bay esian Information<br>Criterion (BIC) | 1559.035 |    |          |
| Consistent AIC (CAIC)                    | 1566.035 |    |          |

Dependent Variable: Bronchospasm periop Model: (Intercept), Airwsusc1, Family w, Ecz, Anaest, airwman1, airwman2

- a. The full log likelihood function is display ed and used in computing information criteria.
- b. Information criteria are in small-is-better form.

#### Omnibus Test<sup>a</sup>

| Likelihood<br>Ratio |    |      |
|---------------------|----|------|
| Chi-Square          | df | Sig. |
| 343.961             | 6  | .000 |
| 343.961             | 6  | .00  |

Dependent Variable: Bronchospasm periop Model: (Intercept), Airwsusc1, Familyw, Ecz, Anaest, airwman1, airwman2

a. Compares the fitted model against the intercept-only model.

#### **Tests of Model Effects**

|             |            | Type III |      |
|-------------|------------|----------|------|
|             | Wald       |          |      |
| Source      | Chi-Square | df       | Sig. |
| (Intercept) | 660.178    | 1        | .000 |
| Airwsusc1   | 109.823    | 1        | .000 |
| Familyw     | 19.420     | 1        | .000 |
| Ecz         | 42.263     | 1        | .000 |
| Anaest      | 14.548     | 1        | .000 |
| airwman1    | 1.056      | 1        | .304 |
| airwman2    | 9.233      | 1        | .002 |

Dependent Variable: Bronchospasm periop Model: (Intercept), Airwsusc1, Familyw, Ecz, Anaest, airwman1, airwman2

|                  |                |            | 95% Wald Confidence<br>Interval Hypothesis Test |        |            |    | 95% Wald Confidence<br>Interval for Exp(B) |        |       |       |
|------------------|----------------|------------|-------------------------------------------------|--------|------------|----|--------------------------------------------|--------|-------|-------|
|                  |                |            |                                                 |        | Wald       |    |                                            |        |       |       |
| Parameter        | В              | Std. Error | Lower                                           | Upper  | Chi-Square | df | Sig.                                       | Exp(B) | Lower | Upper |
| (Intercept)      | -7.038         | .4850      | -7.988                                          | -6.087 | 210.553    | 1  | .000                                       | .001   | .000  | .002  |
| [Airwsusc1=1.00] | 1.732          | .1653      | 1.408                                           | 2.056  | 109.823    | 1  | .000                                       | 5.653  | 4.089 | 7.816 |
| [Airwsusc1=.00]  | 0 <sup>a</sup> |            |                                                 |        |            |    |                                            | 1      |       |       |
| [Familyw=1.00]   | .622           | .1412      | .346                                            | .899   | 19.420     | 1  | .000                                       | 1.863  | 1.413 | 2.458 |
| [Familyw=.00]    | 0 <sup>a</sup> |            |                                                 |        |            |    |                                            | 1      |       |       |
| [Ecz=1.00]       | .956           | .1471      | .668                                            | 1.244  | 42.263     | 1  | .000                                       | 2.601  | 1.950 | 3.470 |
| [Ecz=.00]        | 0 <sup>a</sup> |            |                                                 |        |            |    |                                            | 1      |       |       |
| [Anaest=1.00]    | 1.124          | .2947      | .547                                            | 1.702  | 14.548     | 1  | .000                                       | 3.078  | 1.727 | 5.484 |
| [Anaest=.00]     | 0 <sup>a</sup> |            |                                                 |        |            |    |                                            | 1      |       |       |
| [airwman1=1.00]  | .430           | .4186      | 390                                             | 1.251  | 1.056      | 1  | .304                                       | 1.538  | .677  | 3.493 |
| [airwman1=.00]   | 0 <sup>a</sup> |            |                                                 |        |            |    |                                            | 1      |       |       |
| [airwman2=1.00]  | 1.259          | .4144      | .447                                            | 2.072  | 9.233      | 1  | .002                                       | 3.523  | 1.564 | 7.937 |
| [airwman2=.00]   | 0 <sup>a</sup> |            |                                                 |        |            |    |                                            | 1      |       |       |
| (Scale)          | 1 <sup>b</sup> |            |                                                 |        |            |    |                                            |        |       |       |

#### Parameter Estimates

Dependent Variable: Bronchospasm periop Model: (Intercept), Airwsusc1, Family w, Ecz, Anaest, airwman1, airwman2

a. Set to zero because this parameter is redundant.

b. Fixed at the displayed value.

### Likelihood ration test for the variable age

#### Omnibus Test<sup>a</sup>

| Likelihood<br>Ratio |    |      |
|---------------------|----|------|
| Chi-Square          | df | Sig. |
| 344.110             | 7  | .000 |

Dependent Variable: Bronchospasm periop Model: (Intercept), Airwsusc1, Familyw, Ecz, Anaest, airwman1, airwman2, age

a. Compares the fitted model against the intercept-only model.

#### Omnibus Test<sup>a</sup>

| Likelihood<br>Ratio |    |      |
|---------------------|----|------|
| Chi-Square          | df | Sig. |
| 343.961             | 6  | .000 |

Dependent Variable: Bronchospasm periop Model: (Intercept), Airwsusc1, Familyw, Ecz, Anaest, airwman1, airwman2

a. Compares the fitted model against the intercept-only model.

| Chi-square (with age)    | =344.11  | df=7 |
|--------------------------|----------|------|
| Chi-square (without age) | =343.961 | df=6 |
| Difference:              | 0.149    | df=1 |
|                          |          |      |

Not significant at 0.05 level

So adding variable age does not increase significantly the model chisquare, i.e., does not decrease significantly the deviance D=-2logL.

# Part of the review of New England Journal of Medicine

9. Which "...statistically significant variables were not included into the set of candidate variables"? What was the rationale for this exclusion?

10. With so many variables evaluated, was there a power analysis to justify the number of subjects, number of RAEs, and the number of variables in question? Type I errors should be discussed.

11.

Was there some statistical addressing the multiple comparisons, such as a Bonferonni (or equivalent) correction?

The authors could explore using propensity scores to which may assist in giving some idea of adjusted absolute risk reduction.

### Next: Lancet

- There were no main problems concerning statistics
- But based on question of the reviewers, we had to put new univariate statistics into the text of the manuscript.
- What can we do against the increase of Type I error?

### Other problems during the analysis

I misunderstood the meaning of some variables (recovery room – at recovery)
The problem of decimal digits
The problem of frequencies

### Correction of p-values: Step-down Bonferroni method

- I corrected every p-values occuring in the tables or text, and they remain significant at p<0.05 level (sample size: 10000, p=10<sup>-27</sup> !!!)
- Based on new requests, the number of p-values changed during the process
- Repeated 4 times
- Question: publish original or corrected p-values?
- Result: corrected p-value were published it contradicts to the level of confidence intervals which were not corrected

**Table 5**. Risk factors for perioperative bronchospasm, laryngospasmon the timing of symptoms and all respiratory adverse events (bronchospasm, laryngospasm, desaturation, severe coughing, airway obstruction, stridor) as compared to no symptom.

Data are presented as relative risk (RR) and 95% confidence interval.

|             |                | Bronchospasm  |               |               | Laryngospasm  |                | All complications |               |               |  |
|-------------|----------------|---------------|---------------|---------------|---------------|----------------|-------------------|---------------|---------------|--|
|             | Currently      | <2 weeks      | 2-4 weeks     | Currently     | <2 weeks      | 2-4 weeks      | Currently         | <2 weeks      | 2-4 weeks     |  |
| Clear runny | 2.0 (1.3-3.0)  | 1.1 (0.6-2.0) | 1.1 (0.5-2.2) | 2.0 (1.5-2.7) | 2.0 (1.5-2.9) | 1.1 (0.7-1.9)  | 1.5 (1.3-1.8)     | 1.4 (1.1-1.7) | 1.0 (0.7-1.3) |  |
| nose        | p=0.001*       | p=0.738       | p=0.900       | p<0.0001***   | p<0.0001***   | p=0.672        | p<0.0001***       | p=0.001*      | p=0.740       |  |
|             |                |               |               |               |               |                |                   |               |               |  |
| Green runny | 1.9 (0.9-4.3)  | 2.4 (1.1-4.9) | 0.8 (0.3-1.8) | 4.4 (3.0-6.5) | 6.6 (4.8-9.1) | 0.1 (0.01-0.6) | 3.1 (2.6-3.8)     | 3.4 (2.8-4.1) | 0.2 (0.1-0.4) |  |
| nose        | p=0.107        | p=0.023       | p=0.514       | p<0.0001***   | p<0.0001***   | p=0.015        | p<0.0001***       | p<0.0001***   | p<0.0001***   |  |
|             |                |               |               |               |               |                |                   |               |               |  |
| Dry cough   | 1.7 (0.96-2.9) | 2.1 (1.2-3.8) | 0.6 (0.2-1.8) | 2.2 (1.5-3.1) | 2.1 (1.4-3.3) | 0.5 (0.2-1.3)  | 1.7 (1.4-2.1)     | 1.9 (1.5-2.3) | 0.3 (0.2-0.6) |  |
|             | p=0.071        | p=0.015       | p=0.327       | p<0.0001**    | p=0.001*      | p=0.155        | p<0.0001***       | p<0.0001***   | p<0.0001***   |  |
| Moist cough | 3.3 (2.1-5.0)  | 4.0 (2.6-6.3) | 0.3 (0.1-1.1) | 3.9 (2.9-5.2) | 6.5 (5.0-8.5) | 0.1 (0.01-0.6) | 3.1 (2.6-3.5)     | 3.4 (2.9-4.0) | 0.5 (0.3-0.7) |  |
| worst cough | p<0.0001***    | p<0.0001***   | p=0.069       | p<0.0001***   | p<0.0001***   | p=0.012        | p<0.0001***       | p<0.0001***   | p<0.0001**    |  |
|             |                |               |               |               |               |                |                   |               |               |  |
| Fever       | 4.2 (2.0-8.7)  | 2.0 (0.8-5.3) | 0.8 (0.3-2.4) | 2.3 (1.1-4.8) | 5.3 (3.5-8.0) | 0.6 (0.2-1.5)  | 2.9 (2.2-3.8)     | 2.9 (2.3-3.8) | 0.5 (0.3-0.9) |  |
|             | p<0.0001**     | p=0.164       | p=0.645       | p=0.020       | p<0.0001***   | p=0.259        | p<0.0001***       | p<0.0001***   | p=0.017       |  |
|             |                |               |               |               |               |                |                   |               |               |  |

\*: p<0.05 after the correction by step-down Bonferroni method

\*\* : p<0.01 after the correction by step-down Bonferroni method

\*\*\*: p<0.001 after the correction by step-down Bonferroni method

### Consequences

### We published the paper in the Lancet.

- Title: <u>Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study</u> Author(s): von Ungern-Sternberg BS, Boda K, Chambers NA, et al. Source: LANCET Volume: 376 Issue: 9743 Pages: 773-783 Published: SEP 4 2010
- The big sample size is important
- Appropriate data set is important
- Good cooperation with the physician is necessary
- Statistician should know a little bit biology
- Was this statistics good enough? Can we continue the research? Propensity score analysis?

### Reactions

### We have already references

### It is really interesting meanly from medical point of view

### The week-end Australian, West Australian

### **Triggers found on asthma risk**

#### ADAM CRESSWELL HEALTH EDITOR

CHILDREN with a dry nighttime cough, past or present eczema or who wheeze during exercise have more than eight times the risk of suffering an asthma attack while under anaesfatal if corrective drugs fail.

The same factors put affected children at four times the risk that their vocal cords will lock up while under sedation, a situation that requires the prompt use of muscle-relaxing drugs to allow air back into the lungs.

The findings — the result of Australian research involving nearly 10,000 children undergo-

ing operations at a Perth hospital - suggest doctors can more accurately predict which children are at highest risk for bad reactions by asking whether they share these risk factors.

The research also indicates that a child who has recently had a cold or another airway infection is at increased risk for an anaesthetic — a situation that can be thetic reaction for only two weeks afterwards - the first time doctors have had a clear idea of how long the post-infectious danger period lasts.

> Serious adverse events are extremely rare among children under anaesthetic. The research. published yesterday in the British medical journal The Lancet, showed that 1392, or 15 per cent. of the 9297 children for whom full

data was available had respiratory adverse events during or soon after their operations. However, pediatric anaesthetist Britta von Ungern-Sternberg, who ran the study at Perth's Princess Margaret Hospital for Children, said most of these events were minor and transient, and only a tiny sub-group experienced lasting harm. "It's pinpointed the risk

factors - how we can predict the children who are going to have complications," she said.

Andrew Davidson, staff anaesthetist at the Royal Children's Hospital in Melbourne, said it was "a significant study because it has really crystallised a lot of the previous 'maybes' about which children are likely to get complications".

### New surgery check

#### CATHY O'LEARY

Doctors at Princess Margaret Hospital have developed a checklist for children having surgery which uses details such as a history of asthma and exposure to passive smoking to reduce the risk of complications during operations.

Their study of more than 9200 children, published in the medical journal The Lancet, used a revised medical questionnaire about the child's health and family history of disease as well as a physical examination to identify children most at risk of adverse events.

Professor Britta von Ungern-Sternberg, who chairs paediatric anaesthesia at PMH, said the checklist could identify those at higher risk and help determine their pre-operative care and the anaesthetic used.

### References

- 1. A. Agresti: Categorical Data Analysis 2nd. Edition. Wiley, 2002
- 2. A.J. Dobson: An introduction to generalized linear models. Chapman &Hall, 1990.
- 3. D.W. Hosmer and S.Lemeshow: Applied Logistic Regression. Wiley, 2000.
- 4. T. Lumley, R. Kronmal, S. Ma: Relative Risk Regression in Medical Research: Models, Contrasts, Estimators, and Algorithms. UW Biostatistics Working Paper Series University of Washington, Year 2006 Paper 293 <u>http://www.bepress.com/uwbiostat/paper293</u>
- SAS Institute, Inc: The MIXED procedure in SAS/STAT Software: Changes and Enhancements through Release 6.11. Copyright © 1996 by SAS Institute Inc., Cary, NC 27513.
- 6. SPSS Advanced Models 9.0. Copyright © 1996 by SPSS Inc P.

 If had only one day left to live, I would live it in my statistics class: it would seem so much longer.
 Mathematical Jokes: Statistics