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Sample space and events

Suppose that we will perform an experiment whose outcome is not

predictable in advance and let us suppose that the set of all possible

outcomes is known. This set is called the sample space and here

will be denoted by Ω. For instance, if the experiment consists of

rolling a die, the sample space is

Ω = {1, 2, 3, 4, 5, 6}

where the outcome i stands for the case when the number i appear

on the die, i = 1, 2, 3, 4, 5, 6.
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Sample space and events

An event A is a subset of the sample space Ω. In the example with

rolling a die, the event A = {2, 4, 6} is the event that an even

number appears on the roll. Specially, ∅ refers to the event

consisting of no outcomes.

Since events are sets, all usual set operations are allowed such as,

union, intersection, taking a subset,...

We usually denote the intersection of events A and B by AB.

The union of mutually exclusive events A1, A2, . . . (that means

that AiAj = ∅ when i ̸= j) is denoted by
∞∑
i=1

Ai.
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Probability of events

Suppose that, for each event A of the sample space Ω, a number

P (A) is defined and satisfies the following conditions:

(i) P (Ω) = 1.

(ii) 0 ≤ P (A) ≤ 1.

(iii) For any family of mutually exclusive events A1, A2, . . . the

following holds:

P

( ∞∑
i=1

Ai

)
=

∞∑
i=1

P (Ai).

The number P (A) is called the probability of the event A.
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Conditional probability

The probability that A occurs given that B has occurred is called the

conditional probability and it is denoted by P (A|B). It is defined by

P (A|B) =
P (AB)

P (B)
.

Note that P (A|B) is well defined only if P (B) > 0. If both

P (A) > 0 and P (B) > 0, then from

P (A|B) =
P (AB)

P (B)
and P (B|A) = P (AB)

P (A)

one obtains

P (AB) = P (A|B) · P (B) = P (B|A) · P (A).
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Independent events

Intuitively, two events A and B are independent if the realization of

either of this two has no impact on the probability that the other one

occurs:

P (A|B) = P (A) and P (B|A) = P (B).

Based on this, one obtains the formal definition: Two events A and

B are independent if

P (AB) = P (A) · P (B).
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Independent events

Example Suppose we toss two fair coins. What is the probability

that on both coins heads appear?

Solution: To solve this problem, denote by A1 and A2 the events

that head appears on the first and the second coin, respectively.

Then, the desired probability is P (A1A2) and, since A1 and A2

are independent, can be calculated as

P (A1A2) = P (A1)P (A2) =
1

2
· 1
2
=

1

4
.
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Random variables

It is very often that in performing some experiment we are more

interested in some functions of outcome then in outcome itself. For

instance, in tossing dice we are interested in the sum of two dice

and rarely in the actual outcome.

These real valued functions defined on the sample space are

random variables.

We may assign probabilities to the set of possible values of the

random variable since those values are determined by the

outcomes of the experiment.
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Random variables

For instance, suppose that the experiment consists of tossing two

fair coins and denote by H the outcome when head appears on

whatever coins and by T the outcome when tail appears. If X

denote the number of heads appearing, then X is a random

variable taking one of the values 0,1,2 with probabilities

P{X = 0} = P{(T, T )} = 1/4,

P{X = 1} = P{(H,T )}+ P{(T,H)} = 2/4,

P{X = 2} = P{(H,H)} = 1/4.

Of course, P{X = 0}+ P{X = 1}+ P{X = 2} = 1.
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Random variables

The distribution function FX of the random variable X is defined for

any real number b, −∞ < b < ∞, by

FX(b) = P{X < b}.

It is nondecreasing function, such that

lim
b→−∞

FX(b) = FX(−∞) = 0, lim
b→∞

FX(b) = FX(∞) = 1.

All probability questions about X can be answered in terms of

distribution function. For instance,

P (a ≤ X < b) = FX(b)− FX(a), for all a, b ∈ R, a < b.
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Random variables

Discrete random variables

1. The binomial random variable

2. The Poisson random variable

3. The geometric random variable

Continuous random variables

1. The uniform random variable

2. The exponential random variable

3. The normal random variable
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Discrete random variables

A random variable that can take at most a countable number of

possible values is said to be discrete. For a discrete random

variable X define

p(b) = P{X = b}

and it is called the probability mass function of X . If X must take

one of the values x1, x2,. . . , then p(xi) > 0, i = 1, 2, . . .and

p(x) = 0, for all other values of x. This can be written as

X :

 x1 x2 . . . xn . . .

p(x1) p(x2) . . . p(xn) . . .

 .
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The binomial random variable

Suppose that experiment consists of n independent trials during

which an event A occurs with the probability p (hence, it does not

occur with probability q = 1− p). If X represents the number of

occurring of event A in the n trials, then X is a binomial random

variable with parameters n and p (we write X : B(n; p)), where

n ∈ N and 0 < p < 1. Then

X :

 0 1 . . . k . . . n

p(0) p(1) . . . p(k) . . . p(n)

 ,
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where

p(i) =

 n

i

 piqn−i, i = 0, 1, . . . , n.

Note that,

n∑
i=0

p(i) =

n∑
i=0

 n

i

 piqn−i = (p+ (1− p))n = 1.
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The Poisson Random variable

The random variable X is said to be Poisson random variable with

parameter λ > 0 (we write X : P(λ)), if

X :

 0 1 . . . n . . .

p(0) p(1) . . . p(n) . . .

 ,

where

p(i) =
λi

i!
e−λ, i = 0, 1, . . . , n.
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Then,
∞∑
i=0

p(i) = e−λ
∞∑
i=0

λi

i!
= e−λeλ = 1.

One of important properties of Poisson random variable is that it can

be used to approximate a binomial random variable when the

binomial parameter n is large and p is small. Namely, if

X : B(n; p) and n → ∞ and p → 0, but np → const, then

p(k) → λk

k!
e−λ, k = 0, 1, . . . ,

where p(k) is probability mass function for binomial random

variable.
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Example Suppose that the number of typographical errors on a

single page of some book has a Poisson distribution with parameter

λ = 1. What is the probability that there is at least one error on a

certain page?

Solution:

P{X ≥ 1} = 1− P{X = 0} = 1− e−1 ≈ 0.633.

Example If the number of accidents occurring on a highway each

day is a Poisson random variable with parameter λ = 3, what is the

probability that no accident occur on a certain day?

Solution: P{X = 0} = e−3 ≈ 0.05.
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The geometric random variable

Suppose that experiment consists of n independent trials during

which an event A occurs with the probability p. If X is the number

of trials until the first appearance of A, then X is said to be the

geometric random variable with parameter 0 < p < 1 (we write

X : G(p)), and

X :

 1 2 . . . n . . .

p(1) p(2) . . . p(n) . . .

 ,

where

p(i) = p qi−1, i = 1, 2, . . . , q = 1− p.
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Again, we have

∞∑
i=1

p(i) = p

∞∑
i=1

qi−1 = p

∞∑
i=0

qi = p
1

1− q
=

p

p
= 1.

Example Luka goes target shooting and he hits the target with the

probability 0.7. If he shoots until he misses the target, what is the

probability that he shoots exactly three times?

Solution: If X is the number of shooting, then X is a geometric

random variable with p = 0.3. Then,

P{X = 3} = (0.7)2 · 0.3 = 0.147.

TEAMATHMODSCI, Szeged, May 2011



19

Continuous random variables

Continuous random variables have uncountable set of possible

values. More precisely, X is said to be continuous if there exists a

nonnegative function φX : R 7→ R+, such that

P{X ∈ B} =

∫
B

φX(t) dt, for any set B of real numbers.

The function φX is called the probability density function of random

variable X , or just the density function of X .
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By choosing B = (−∞,∞) one conclude that φX must satisfy

1 = P{X ∈ (−∞,∞)} =

∫ ∞

−∞
φX(t) dt.

By choosing B = [a, b] one obtains

P{a < X < b} = P{X ∈ [a, b]} =

∫ b

a

φX(t) dt.

If a = b it follows that

P{X = a} =

∫ a

a

φX(t) dt = 0.
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By choosing B = (−∞, b), one obtains

FX(b) =

∫ b

−∞
φX(t) dt, for any b ∈ R,

where FX is the distribution function of random variable X .

Differentiating both sides gives

d

db
FX(b) = φX(b).
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The uniform random variable

A continuous random variable X is said to be uniformly distributed

over the interval (a, b), a, b ∈ R and a < b, (we write

X : U(a, b)), if its density function is

φX(x) =


1

b− a
, x ∈ (a, b)

0, x /∈ (a, b)
.

For example, if X is the number randomly selected from the interval

(a, b), then X : U(a, b).
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The distribution function of X : U(a, b) is

FX(x) =


0, x ≤ a

x− a

b− a
, a < x ≤ b

1, x > b

.

Example We select a number from the interval (0,10) by chance.

What is the probability that it is less then 3?

Solution: If X is the number we select, then it is uniformly

distributed over the interval (0,10). Therefore,

P{X < 3} =

∫ 3

0

dx

10
=

3

10
.
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The normal random variable

A continuous random variable is said to be normally distributed with

parameters m ∈ R and σ > 0, (we write X : N (m;σ2), if its

density function is

φX(x) =
1

σ
√
2π

e−
(x−m)2

2σ2 , x ∈ R.

The distribution function of X : N (m;σ2) is

FX(x) =
1

σ
√
2π

∫ x

−∞
e−

(t−m)2

2σ2 dt, x ∈ R.
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The important property is that, if X is normally distributed with

parameters m and σ2, then Y = aX + b is also normally

distributed but with parameters am+ b and a2σ2 > 0.

In case when m = 0 and σ2 = 1 one obtains so-called standard

normal distribution, N (0; 1) which has many applications (for

instance, in statistics).
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Jointly distributed random variables

We are often interested in probability statements concerning two or

more random variables. To deal with such probabilities, we define,

for any two random variables X and Y , the joint cumulative

probability distribution function of X and Y by

FXY (a, b) = P{X < a, Y < b}, −∞ < a, b < ∞.

The distribution of X is obtained from the joint distribution of X and

Y as follows:

FX(a) = P{X < a} = P{x < a, Y < ∞} = FXY (a,∞).

Similarly, FY (b) = FXY (∞, b).
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Independent random variables

The random variables X and Y are said to be independent if, for all

a, b,

P{X < a, Y < b} = P{X < a} · P{Y < b}.

In other words, X and Y are independent if, for all a and b, the

events {X < a} and {X < b} are independent. In the terms of

distribution functions, X and Y are independent if

FXY (a, b) = FX(a) · FY (b), for all a, b.
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Expectation and variance

In probability theory, the expectation (expected value, mean) of a

random variable is the weighted average of all possible values that

this random variable can take on.

The expectation of the random variable X , E(X), is

∗ E(X) =
∑
i

xip(xi), in case X is discrete with the

probability mass function P{X = xi} = p(xi);

∗ E(X) =

∫ ∞

−∞
x φX(x) dx, in case X is continuous with

the density function φX(x),

assuming that sum and integral above are absolutely convergent.
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Let Y be a function of random variable X , that is Y = g(X). Then

∗ E(Y ) = E(g(X)) =
∑
i

g(xi)p(xi), in case X is discrete

with the probability mass function p(xi).

∗ E(Y ) = E(g(X)) =

∫ ∞

−∞
g(x) φX(x) dx, in case X is

continuous with the probability density function φX(x),

assuming that the sum and the integral above are absolutely

convergent.
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The variance of the random variable X is defined as

D(X) = E
(
(X − E(X))

2
)
.

One easily calculates D(X) = E(X2)− E2(X).

Since the variance is always nonnegative, one can define

σ(X) =
√

D(X) and it is called the standard deviation of the

random variable X .

For random variable X having the expectation and the variance we

can define

X∗ =
X − E(X)√

D(X)
.

One can easily show

E(X∗) = 0 and D(X∗) = 1.
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Stochastic processes

A stochastic process {X(t), t ∈ T} is a collection of random

variables.

(It means that, for each t ∈ T , X(t) is a random variable.)

The index t is often interpreted as time. Therefore, we refer to X(t)

as the state of the process at time t.

For example, X(t) might be the number of customers in the

supermarket at time t.
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The set T is called the index set of the process.

If T is countable set then the stochastic process is said to be a

discrete-time process.

On the other hand, if T is an interval of the real line, the stochastic

process is said to be a continuous-time process.

Usually, by {Xn, n = 0, 1, . . .} we denote a discrete-time

process indexed by nonnegative integers, while {X(t), t ≥ 0}
usually denotes a continuous-time stochastic process indexed by

nonnegative real numbers.

The state space of a stochastic process is the set of all possible

values that the random variables X(t) can assume. Thus, a

stochastic process is a family of random variables that describes the

evolution through the time of some (physical) process.
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Markov chains

Consider a stochastic process {Xn, n = 0, 1, 2, . . .} that takes a

finite or countable number of possible values. The set of possible

values of the process will be denoted by the set of nonnegative

integers {0, 1, 2, . . .}.

If Xn = i, then the process is said to be in state i at time n.

Supposition: Whenever the process is in state i, there is a fixed

probability Pij that next it will be in state j:

Pij = P{Xn+1 = j | Xn = i}. Then we suppose

P{Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X0 = i0} = Pij

for all states i0, i1, . . . , in−1, i, j and all n = 0, 1, 2 . . ..
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The property in the previous slide may be interpreted as stating that

conditional distribution of any future state Xn+1 given the past

states X0, X1, . . . , Xn−1 and the present state Xn, is

independent of the past states and depends only on the present

state!

A process having this property is called Markov chain.

The matrix P = [Pij ]ij is called transition probability matrix.

We define n-step transition probability Pn
ij to be the probability that

a process in state i will be in state j after n additional transforms:

Pn
ij = P{Xk+n = j | Xk = i}, i, j ≥ 0, n = 0, 1, 2, . . . .
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The Chapmen-Kolmogorov equations provide a method for

computing n-step transition probabilities:

Pn+m
ij =

∑
Pn
ikP

m
kj , for all n,m = 0, 1, 2, . . . , and all i, j.

Explanation: Pn
ikP

m
kj represents the probability that starting in i the

process will go to the state j in n+m transitions through a path

which takes it into state k at the nth transition. Summing over all

intermediate states k gives the probability that the process will be in

state j after n+m transitions.

If we denote by Pn the n-step transition probability matrix Pn
ij ,

Pn = [Pn
ij ]ij , then

Pn+m = PnPm, and consequently Pn = Pn.
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Examples [Sheldon M. Ross, Probability Models]

Example 1: (Forecasting the weather) Suppose that the chance of

rain tomorrow depends on previous weather conditions only through

whether or not it is raining today and not on past weather conditions.

Suppose also that if it rains today, then it will rain tomorrow with

probability α and if does not rain today, then it will rain tomorrow

with probability β.

We will define the corresponding Markov chain and its transition

probability matrix.

For α = 0.7 and β = 0.4 we will calculate the probability that it will

rain four days from today given that it is raining today.
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Solution: If we say that the process is in state 0 when it rains and in

state 1 when it does nor rain, then one has a two-state Markov chain

whose transition probability matrix is given by

P =

 P00 P01

P10 P11

 =

 α 1− α

β 1− β

 .

Specially, for α = 0.7 and β = 0.4 the one-step transition

probability matrix is

P =

 0.7 0.3

0.4 0.6

 .
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The two-step transition probability matrix is

P2 = P 2 =

 0.7 0.3

0.4 0.6

·
 0.7 0.3

0.4 0.6

 =

 0.61 0.39

0.52 0.48

 .

The four-step transition probability matrix is

P4 = P 4 = (P 2)2 =

 0.5749 0.4251

0.5668 0.4332

 .

So, the probability that it will rain four days from today given that it is

raining today is P 4
00 = 0.5749.

TEAMATHMODSCI, Szeged, May 2011



39

Example 2: (A communication system) Consider a communication

system which transmits the digits 0 and 1. Each digit transmitted

must pass through several stages, at each of which there is a

probability p that the digit entered will be unchanged when it leaves.

Letting Xn denote the digit entering the nth stage, then

{Xn, n = 1, 2, . . .} is a two-state Markov chain having a

transition probability matrix

P =

 p 1− p

1− p p

 .
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Example 3: (A random walk model) A Markov chain whose state

space is given by the integers i = 0,±1,±2, . . . is said to be a

random walk if, for some number 0 < p < 1,

Pi,i+1 = p = 1− Pi,i−1, i = 0,±1,±2, . . . .

It is called random walk since we may think of it as being a model for

an individual walking on a straight line where one at each point of

time either takes one step to the right with the probability p or one

step to the left with the probability 1− p.
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Example 4: (A gambling model) Consider a gambler who, at each

play of the game, either wins 1 dollar with probability p or loses 1

dollar with probability 1− p. If we suppose that our gambler quits

playing either when he goes broke or he attains a fortune of N

dollars, then the gambler’s fortune is a Markov chain having

transition probabilities

Pi,i+1 = p = 1− Pi,i−1, i = 1, 2, . . . , N − 1

P00 = PNN = 1.

States 0 and N are called absorbing states since once entered they

are never left. The process is actually a finite state random walk with

absorbing barriers (states 0 and N ).
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Counting process

A stochastic process {N(t), t ≥ 0} is said to be a counting

process if N(t) is the total number of events that occur by time t.

From its definition we see that counting process N(t) must satisfy:

(i) N(t) ≥ 0.

(ii) N(t) is integer valued.

(iii) If s < t, then N(s) ≤ N(t).

(iv) For s < t, N(t)−N(s) equals the number of events that

occur in the interval (s, t].

TEAMATHMODSCI, Szeged, May 2011



43

Poisson process

The counting process {N(t), t ≥ 0} is said to be a Poisson

process having rate λ, λ > 0, if

(i) N(0)=0.

(ii) The process has independent increments (the number of events

that occur in disjoint time intervals are independent).

(iii) The number of events in any interval of length t is Poisson

distributed with mean λt. That is, for all s, t ≥ 0,

P{N(t+ s)−N(s) = n} =
(λt)n

n!
e−λt, n = 0, 1, 2, . . .
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The alternative definition of a Poisson process, equivalent to the

previous definition, is:

The counting process {N(t), t ≥ 0} is said to be a Poisson

process having rate λ, λ > 0, if

(i) N(0)=0.

(ii) The process has independent and stationary increments.

(iii) P{N(h) = 1} = λh+ o(h).

(iv) P{N(h) ≥ 2} = o(h).
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Consider a Poisson process and denote the time of the first event by

T1. Further, for n > 1, let Tn denote the elapsed time between the

(n− 1)st and nth event.

The sequence {Tn, n = 1, 2, . . .} is called the sequence of

interarrival times.

Tn, n = 1, 2, . . . are independent identically distributed

exponential random variables having mean 1/λ.

The arrival (waiting) time of the nth event is Sn = T1 + . . .+ Tn

and it has the probability density function

φSn(t) = λe−λt (λt)
n−1

(n− 1)!
, t ≥ 0.
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Example: Suppose that people immigrate into a territory at a

Poisson rate λ = 1 per day.

a) What is the expected time until the tenth immigrant arrives?

b) What is the probability that the elapsed time between the tenth

and the eleventh arrival exceeds two days?

Solution:

a) E(S10) = 10/λ = 10 days.

b) P{T11 > 2} = e−2λ = e−2 ≈ 0.133.

TEAMATHMODSCI, Szeged, May 2011



47

Some of the applications of Poisson processes:

- In queueing theory

- In medicine (for example, in tracking the number of HIV

infections)

- In actuarial mathematics (insurance theory, ruin theory)

- In reliability theory (for example, estimating software reliability)

- In biology (Birth and death processes...)
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Generalizations of the Poisson process

Some generalizations of the Poisson process are

- Nonhomogeneous Poisson process

- Compound Poisson process

- Conditional or mixed Poisson process
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Thank you!
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