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Approximated solution of one and multivariable equationan important part of numerical mathematics. The easiest
case of the Newton-Raphson method leads toathe1 = zn — f,((fcz)) formula which is both easy to prove and
memorize, and it is also very effective in real life probleri®wever, choosing of the starting point is very important,
because convergence may no longer stand for even the ezgirdions.

Computer aided visualization can give a good picture of tfjaand “bad” z( points, and we are also able to study the
end point of the convergence. The relationship betweenubi& olynomial equations and the Newton fractal is very
obvious, and the latter is a marvellous case of self simylamifractal geometry. To show such behavior we use the XaoS
software which is able to demonstrate the common basinswicgence with different colors in real-time visualizatio
including zooming in or out.

The multivariate Newton-Raphson method also raises theeafjoestions. Visual analysis of these problems are done
by the Sage computer algebra system. Sage has a large setlefmiools, including groupware and web availability.
While Sage is a free software, it is affordable to many pedptduding the teacher and the student as well.

1. Introduction

Finding roots of univariate equations is a very importasktaf applied mathematics. It is a basic question how
one can solve thé¢(z) = 0 equation by utilizing a computer. To answer this questioanymmethods exist for the
solution of this problem. Assuming thgtis differentiable and its derivatives are non-zero, onedfine the

@)

Tn4+1 = Tn —
sequence, where, is a “well chosen” point in the neighborhood of one of the etpd roots. This calculation
process is often calleldewton—Raphson methadnumerical mathematics.

Mathematics is usually precise enough, but the above defirg not. What is aneighborhoo@ What doesvell
chosemmean? Of course, there are many investigations and gemesaéas for that, but to learn how difficult this
question is, it is easy to construct convenient examples.

This paper tries to show this difficulty on a real life examplhes solution of the cubic equation, that is a common
problem in many applications.

2. The cubic polynomial equation

Grammar school methods of solving first and second ordemnpotyal equations are well known. The equation
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flx)=ax+b=0 (2)
has the solution = fg if a # 0 and the equation
fx)=ar* +bx+c=0 (3
has the solutiong;, , = =btEvb=dac w if a # 0. Solutions for cubic polynomial equations has a much more

difficult formula, and it has also a technical problem: to lggp we must use complex arithmetics and (unless
we use tricky methods, and probably a computer algebrarsyatewell) approximated calculations. It is not
surprising that the Newton-Raphson method gives a fastgrfarafinding a good approximation of the roots,

i.e. the following process will usually provide one of th@t®very soon:

axi + bxfI +cx, +d

flx) =ax® +b2® +cx+d =0, f'(z) = 3ax® + 2bx + ¢, Tpy1 = Ty — 3az2 + 2o, +c

(4)

There are many ways to illustrate the speed of this convesgdtrobably one of the smartest is to use a spreadsheet
software (e.g. LibreOffice Calc) and create the followirlge¢a

A|B C|D X

1| 1(2|-3|4 -3
2 = X1— (AS1+ X13+ BS1+X12+CS1+ X1+ D$1)/
(3% A$1 % X172+ 2% BS1+ X1+ C$1)

To emphasize the coefficients pive used thé\ 1, B1, C1 andD1 cells fora, b, c andd respectively, and we hided

the columns betwees andW to show focus on columX (which is for thez,, sequence). As there is no Oth row,
we put the starting point ta; (instead ofxy) which will be shown as th&1 column. X2 contains the general

calculation formula forz,, with relative and absolute references as well. To summahigebove example, our

table shows the definitions to calculate one of the root&(o§ = 2 + 222 — 3z + 4 in the neighborhood of 3.

After evaluatingX2 and copying its contents dynamically into the cells belqwétting the precision to 15 deci-
mals (and widening the column size), we get the followinddab

A|B CcC|D X
112 -=3] 4| —3.000000000000000
—3.333333333333330
—3.285403050108930
—3.284278150031770
—3.284277537307130
—3.284277537306950
—3.284277537306950
—3.284277537306950
—3.284277537306950

OO N[O O B W N~

The Reader can verify that the last four elements of sequertbe table are equal, at least in numerical sense.

Theoretical considerations can prove that the speed ofecgamce becomes quadratic for this process, if the
approximation is close enough to the limit. Quadratic coggace means that the number of the correct decimals
in the above sequence is approximately doubling in each ktepatfter the integer part iy andxz, has O correct
digits, butzs has 2,24 has 5, and:; has 11.

Unfortunately;z; has to be selected carefully. Surprisingly enough, putigg into it, we get a slightly different
process:
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A|B| C|D X
112 -3] 4 3.000000000000000
—1.888888888888890
1.088816972312120
1.193955741621468
1.852001854926000
1.058953573619320
0.134294516934989
0.880535307620495
—0.380554160315144

OO N OO W N

and so on, the sequence got mad, seems to become chaotied lnde- 3 is far from the only root off, but how
do we know what is far enough here?

There is nothing special in this example above, this is threnabcase. There areanyinitial points forx; which
generate strange behavior. Two poilﬁtsl = %\/ﬁ) will surely stop the process by generating a “division

by zero” error, due tg’(x) = 0, but there are also infinitely many points which result thesgroblem. By
non-polynomial examples fgf we can also obtain divergence to infinity foy as well.

3. All work and no play makes Jack a dull boy

Calculations are important in every day work, but to findiesting relationship between initial points we need to
play. Itis not easy to find out when a given is capable of finding a root if we play only the real axis. Tafea
about the background of this process we need the compler pRractically this will mean that we select not
only from the real line, but from anywhere froth

So let us do the following. Paint the complex plane using dileing method:
o If a selectedr; generates a well behaving process (i.e. convergence ta)iea let us paint; to a light
color.
e If 21 generates a fast convergence, it should be lighter thar.usua
e If 2y generates something different (divergence or “divisiorzéno”), it should be black.

Of course, for an exact painting we need to give precise diefirsi for the coloring algorithm. But this is just a
small detail, the structure of such a picture will be veryiknto Figure[l.

Figure 1: The cubic Newton fractal
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The Reader can see that the complex plane is divided into rpartg, in which there is a different speed of
convergence for the different points, and the parts are tediby thread-like creatures which are connected by
black knots. In short: this kind of calculation has a difft@gometry. But it is interesting enough for investigation
and to learn why this happens during the Newton-Raphsorepsoc

To tell the truth, the above figure is not for the previgiis), but a different one. It is for thé(z) = 2° — 1 =0
equation. The three white circles show the neighborhodakotttird complex unit roots, and the center of the figure
is for the origin of the co-ordinate system. However thissgéo be the simplest case for the cubic polynomials,
its geometry is complicated enough to learn the generaliehaf the Newton-Raphson method, or, in other
words, to explore the cubic Newton fractal.

3.1. The z3 — 1 case

Having a closer look on the Newton fractal, one can easilysioar that there are infinitely many knots in the
picture. Itis not difficult to find them by calculating the #ar; numbers, for which in a given step f/(z,,) = 0,
and in the next step, the process will stop due to division.by 0

Obviously, ifr; = 0, f’(z1) = 327 = 0, sox, cannot be calculated. Thus, 0 is a knot. No other ‘bad’ paiats
be found which cause, not able to be calculated, because the equatiém; ) = 327 = 0 has the only solution
T = 0.

Now let us search for those, points which causes not able to be calculated. For that, cleatly = 0 is a
necessary and sufficient condition:

51
0:172:!171*f($1):$1*$1 5 (5)
3x]

which implies3z3 = 23 — 1, and sor; = ¢ f%. Due to working on the complex plane, this will give three
different knots forr; :

51
(z1); = f/; (cosg Jrz'sing) ,

S

($1)2:7 55 (6)
(1) *Sl(cosﬁf's' ﬁ)

21)3 =4[5 g ~ising).

These points can also be observed as vertices of an eqallatangle (which has its center in the origin). These
three points, plus the origin give us four different knotsilurow.

But there are other knots as well. To find thasepoints which cause, unable to be calculated, we must check
x3 = 0 which means
f(x2) x3 —1
0=a3 =29 — - 7
x3 €2 f/(.TQ) ) 315% ) ( )

SO we obtain

(8)
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One can easily see that andz, has a cubic polynomial relationship, which is exactly = =1 — ’”317_21 that
1
is 29:? — 31:23:% + 1 = 0. This gives at most three different solutions far for each fixedr,. Thus, at most 9
differentx; points exist for whiche, cannot be calculated.

Continuing this reasoning, one can see that in general thidirbe at most3™~* differentx; points for which
Tm+1 Cannot be calculated. Further investigations show thagdchm positive integer number there are exactly
3m—1 differentz; points for which the Newton-Raphson method fails due tositivi by zero atr,, ;. This
means, of course, that there are infinitely many knots forfthe = 2 — 1 case.

3.2. Exploring fractals

Fortunately, there are several software tools for expptiiis new world generated by such simple formulas. One
of the most easy-to-use is Xad$ [4], the free fractal enginielvmakes it possible for the user to view the world
of fractals in real-time zooming.

XaoS allows to visualize the common basins of convergenaesing the coloring method described above. Two
functions can be observed(r) = x® — 1 and f(x) = z* — 1. By using the left mouse button, the user can
zoom into any part of the fractal. By zooming, the user carifywéry her experience that the knots are dense
at the connection of each thread-like creatures, moredesetcreatures are the infinite network of the knots.
Self-similarity can also be well studied by utilizing thisfevare, by gathering experience (see Fiddre 2).

Figure 2: Close-up of the cubic Newton fractala.223 + 0.1244

Another approach for visualization is Sagé [5], the freeheatatics software system. The following Sage code
will generate the Newton fractal for an arbitrafyz) function.

f(x)=x"3-1

def iteration (x1,epsilon, maxiter):
xi=x1
for i in range(maxiter):
dfi=N(diff (f,x).substitute (x=xi))
fi=N(f(xi))
if dfi <>0:
xn=xi—fi/ dfi
if abs(xn-xi)<epsilon:
return i
else:
return maxiter+1
Xi=xn
return maxiter+2

Xmin=—2; xmax=2; ymin=2; ymax=2; epsilon=0.1; size=50; maxiter=10
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18
19| m=matrix(size , size)
20| for i1 in range(size):

21 for i2 in range(size):
22 X1=N((xmin+ils(xmax—xmin)/size +0.0)+(ymin+i2(ymax-ymin)/size +0.0% i)
23 m[i2 ,il]=maxiter+2-iteration (x1, epsilon , maxiter)

24 || matrix_plot (m)

This program calculates the iteration process for a setitidiipoints by calling theteration subroutine with
three parametersl is the startingr; to be checkedepsilon is the convergence threshold améxiter s
the number of maximal iterations. The subroutine returesideded number of iterations for to approximate
the speed of convergence. If it is not possible witimaxiter ~stepsmaxiter +1 is returned. If a ‘division by
zero’ occurs, the subroutine retunmsixiter  +2.

The calculation process is much slower than in XaoS, and $aeeks were also needed in lines 6, 7 and 22 for
forcing numerical calculations instead of symbolic onesr testing convergence the Cauchy criteria was used
(line 10). FigurdB shows the Sage output fdrr) = 23 + 222 — 3z + 4, assumingkmin=-4; xmax=4;
ymin=-4; ymax=4; epsilon=0.1; size=400; maxiter=30 inline 17.

0] 50 100 150 20 0 50 100 150 2()

50 50 50 50

100 100 100 100

150 150 150 150

200 200} = 200

200 :
0 50 100 150 200 0 50 100 150 200

Figure 3: Sage output fgf(x) = 23+ 222 — 3z +4 in the square determined by vertices 4i, —4 + 4i, —4 — 44,
4—4jandl +4, -1+, —-1—14,1—14

The Reader may try her own functions and generate the apatefractals. An Internet search should also offer
many beautiful images created by various researchers. ihe best galleries can be seenat [6].

4. The multivariate Newton-Raphson method

The above program listing can be developed to show a gepedalesult for the Newton-Raphson process for
multivariate equation solving.

To describe our problem by more variables, we can write
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fl(x17x27 v ,.I'n) = 07
f2(.171,.172, e ,xn) = 0,
9)
fn(l’l,l’g, . ,xn) =0.
Herexy, zo,. .., x, are to be searched. (Usually more solutions may exist.) Weige the short notations
Z1
€2
X = . s
Tn
0
0
o=1.1. (10)
0
f1(x)
f2(x)
fx)=1 . |
fn(x)
where all vectors consist of lines of components. Now our problem [g (9) can be shortlytemias
f(x) =0. (11)
For solving [T1) by the multivariate Newton-Raphson metiéglconvenient to define
0f1(x)  9f1(x) 0f1(x)
oxq Oxo ox
0f(x)  9f2(x) 0f2(%)
Je)=| T SO (12)
Ofulx)  Dfulx) 0fa(x)
oz [ Oy,

usually called Jacobian matrix ¢fx). Now the multivariate Newton-Raphson method is defined byvall*
chosen”

Z0o,1

i
xo= | (13)

Zo,n

initial point and the generated sequence of
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x1,1
x1,2

T1,n

22,1 (14)

€22

T2.n

based on th&, n-dimensional point. The calculation process is similafiptfat can be described by

Xnt1 =Xp — (J(x0)) 7 - £(x0). (15)

(Note that[(1) is a special case bf{15) for= 1.) Now we expect that the limit of this sequence (if exists),

Too,1
Too,2
Xoo = )
(16)
Too,n
is a solution of[(IlL), or in other words (sé&é (9)),
fl(xoo,lvxoo,% cee azoo,n) = Oa
f2($oo,17$oo,2; cee azoo,n) = Oa
7)
fn(xoo,lvxoo,% R azoo,n) =0

is true.

This process is shown by a Sage application, similar to theiate case.

var(’'x,y")

f=matrix (2,[sin(x}y,y 2+x"2-1])

J=matrix(SR,2,2)

for i in range(2):
J[i:i+1,0:]=jacobian(f[i:i+1,0:1],(x,y))

def iteration(x1,yl,epsilon, maxiter):
xi=matrix (RDF,2 ,[x1,y1])
for i in range(maxiter):
xil=xi[0,0]
Xi2=xi[1,0]
Ji=N(J. substitute (x=xil,y=xi2))
fi=N(f.substitute (x=xil,y=xi2))
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

if Ji.det()x>0:
xn=xi—Ji.inverse (k fi
if (xn—xi).norm()<epsilon:

return i

else:
return maxiter+1

Xi=xn

return maxiter+2

xmin=-5; xmax=5; ymin=-5; ymax=5; epsilon=0.1; size=200; maxiter=10

m=matrix(size , size)
for il in range(size):
for i2 in range(size):
Xx1=N(xmin+ilx(xmax-xmin)/size +0.0)
y1=N(ymin+i2«(ymax-ymin)/size +0.0)
m[i2 ,il]=maxiter+2iteration (x1,yl, epsilon , maxiter)
matrixplot(m)

The code tries to follow our notations described above, botestechnical tricks here are also needed. We fill in
the J matrix with derivatives of in line 5. Lines 28—29 work with normal coordinates .

Our first test cases atg (x,y) = sinx — y, fa(x,y) = 2® + y? — 1. Figure[4 shows the output for the first view
and suggests that there are two solutions for this equajsipr®.

0 50 100 150 20
0 0
50 50
100 100
150 150
200 200
0 50 100 150 200

Figure 4: Test case #2 (see the benchmarking table for sletailthe multivariate Newton-Raphson method with
corners(—5, —5), (5, —5), (5,5) and(—5, 5)

If we create a plot off; and f, (Fig.[[) it is obvious that these two solutions are the irgetions of the sine
function and the unit circlelz, y) = (0.88954,1.79128) and(z,y) = (—0.88954, —1.79128).

Fig.[@ shows a detailed view of an interesting kind of behem@ar(3, 3).

Another investigation was to find intersection points of Treehirnhausen cubi¢|[7] and a parabola. Two of its
convergence graphs can be seen in[Hig. 7.
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AN 2 2 3C 4
SF

Figure 5: Intersections of the sine function and the unitleir The black polyline and the red points show some
steps of the iteration

0 50 100 150 20
0 0
50 50
100 100
150 150
200 200
0 50 100 150 200

Figure 6: Test case #3 with corndess, 2.5), (3.5,2.5), (3.5,3.5) and(2.5, 3.5)

4.1. Speed issues

Test fl ($, y) f2 ($, y) Lmin Tmax Ymin Ymax € size ! maxiter Time
#1 sinx —y 2?2+ -1 -5 5 -5 5 | 0.01 21 20 13
#2 sinx —y 22 4+y? -1 -5 5 -5 51 0.01 201 20 | 1163
#3 sinz —y 2 +y2—-1] 25 35| 25| 35]0.01 201 20 | 1261
#A | y? —a3 -322 | 22—y —4 0 1 0 110.01 11 10 4
#H |2 —a3 —322 | 22 —y—4 0 1 0 11 0.01 101 10 325
#6 | y?—a3-322 | 22—y —4 0 1 1 21 0.01 201 15| 2021

This table shows that the obtained figures require a rembrkatount of time to be generated by Sage. (The used
architecture was an Intel Pentium 4 2.8 GHz with 2 GB of RAM, Debian 5.0 Linux and Sage 4.1.1 insthl)
Time is measured in seconds, the benchmarking output hagibeeided by théime command in Sage.

There may be additional speedups to be done (e.g. changiegléi to check ifdet.J| < ) but it seems that for
getting as fast output as XaoS gives we require a differemnelogy in the background. Of course, to get first
impressions about the geometry of the multivariable NevRaphson process, Sage gives an acceptable output.
The Reader may read more on comparing the speed of Sage tacothputer algebra systems (Mathematica 7,
Magma and Matlab 2009a) af [8].

1Due to a bug imatrix _plot in Sage PNG output, such sizes must be used to get nicelethhaes.
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0 0 50 100 150 20
0 0 0
50 50 50
100 100 100 100
150 150 150 150
[

200 1 200 200 i 200

0 50 100 150 200 0 50 100 150 200

Figure 7: Basins of convergence and divergence of the NeWaghson method for finding intersec-
tion points of the Tschirnhausen cubic and a parabola withers (—4, —4), (4,—4), (4,4),(—4,4) and
(0,1),(1,1),(1,2),(0,2) (test cases #5 and #6)

5. Stability and some notes on theoretical background

The above calculation shows that it is difficult to predictibe approximation sequence behaves, even for quite
simple problems. However, it is obvious that a large set df ehaving initial points can be given for each
question. Such a question we can also considerdgmamical systemwhich is defined by the sequence generator
formula and the initial point. In other words, to find the cubet of a given complex number, we can take a
dynamical system which generates different sequencesfferaht initial points.

The set of initial points that generate a convergent seqane calledstable points of the dynamical system.
Stable points are important for practical reasons, butrqibits can also be interesting for mathematical artists.
Indeed, non-stable points have unusual geometrical piiepeand are exciting to explore.

Theoretical considerations can lead to remarkable resuftading general estimations for the speed of conver-
gence. For example, if the derivative of tfidunction is always non-zero in a large enough neighborhddken
initial point, and the second order derivativefofs bounded, theory can ensure that the initial point will mown

a well predictable orbit. This means that if we choose thigginpoint close enough to a root g¢f we will get the
root fast enough for practical use. The Reader can find mddg and [2] on this. Some highlighted details of the
proofs and further output figures can be vieweddn [3].

6. Conclusion

Fractal geometry plays an important role in studying mat#al background of every day life processes. The
Newton-Raphson method is an often used technology in Gloglroots of equation systems. Its convergence
graph, showing the “good” starting points and the “bad” gigekoth an interesting visualization for the sciencists,
and also a warning for the end users of the applied numerietiiods to use the underlying technology carefully.

Fractal software developers may investigate how the naulite Newton-Raphson can be implemented to be
reasonably faster than usual CAS methods to obtain the geoat&iews in a shorter time.
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