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Approximated solution of one and multivariable equations is an important part of numerical mathematics. The easiest

case of the Newton-Raphson method leads to thexn+1 = xn −

f(xn)
f ′(xn)

formula which is both easy to prove and
memorize, and it is also very effective in real life problems. However, choosing of the startingx0 point is very important,
because convergence may no longer stand for even the easiestequations.

Computer aided visualization can give a good picture of “good” and “bad”x0 points, and we are also able to study the
end point of the convergence. The relationship between the cubic polynomial equations and the Newton fractal is very
obvious, and the latter is a marvellous case of self similarity in fractal geometry. To show such behavior we use the XaoS
software which is able to demonstrate the common basins of convergence with different colors in real-time visualization,
including zooming in or out.

The multivariate Newton-Raphson method also raises the above questions. Visual analysis of these problems are done
by the Sage computer algebra system. Sage has a large set of modern tools, including groupware and web availability.
While Sage is a free software, it is affordable to many people, including the teacher and the student as well.

1. Introduction

Finding roots of univariate equations is a very important task of applied mathematics. It is a basic question how
one can solve thef(x) = 0 equation by utilizing a computer. To answer this question, many methods exist for the
solution of this problem. Assuming thatf is differentiable and its derivatives are non-zero, one candefine the

xn+1 = xn −
f(xn)

f ′(xn)
(1)

sequence, wherex0 is a “well chosen” point in the neighborhood of one of the expected roots. This calculation
process is often calledNewton–Raphson methodin numerical mathematics.

Mathematics is usually precise enough, but the above definition is not. What is aneighborhood? What doeswell
chosenmean? Of course, there are many investigations and general answers for that, but to learn how difficult this
question is, it is easy to construct convenient examples.

This paper tries to show this difficulty on a real life example: the solution of the cubic equation, that is a common
problem in many applications.

2. The cubic polynomial equation

Grammar school methods of solving first and second order polynomial equations are well known. The equation
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f(x) = ax+ b = 0 (2)

has the solutionx = − b
a

if a 6= 0 and the equation

f(x) = ax2 + bx+ c = 0 (3)

has the solutionsx1,2 = −b±
√
b2−4ac
2a if a 6= 0. Solutions for cubic polynomial equations has a much more

difficult formula, and it has also a technical problem: to apply it, we must use complex arithmetics and (unless
we use tricky methods, and probably a computer algebra system as well) approximated calculations. It is not
surprising that the Newton-Raphson method gives a faster way for finding a good approximation of the roots,
i.e. the following process will usually provide one of the roots very soon:

f(x) = ax3 + bx2 + cx+ d = 0, f ′(x) = 3ax2 + 2bx+ c, xn+1 = xn −
ax3

n + bx2
n + cxn + d

3ax2
n + 2bxn + c

. (4)

There are many ways to illustrate the speed of this convergence. Probably one of the smartest is to use a spreadsheet
software (e.g. LibreOffice Calc) and create the following table:

A B C D X
1 1 2 −3 4 −3
2 = X1− (A$1 ∗X1ˆ3 +B$1 ∗X1ˆ2 + C$1 ∗X1 +D$1)/

(3 ∗A$1 ∗X1ˆ2 + 2 ∗B$1 ∗X1 + C$1)

To emphasize the coefficients off we used theA1, B1, C1 andD1 cells fora, b, c andd respectively, and we hided
the columns betweenE andW to show focus on columnX (which is for thexn sequence). As there is no 0th row,
we put the starting point tox1 (instead ofx0) which will be shown as theX1 column. X2 contains the general
calculation formula forxn with relative and absolute references as well. To summarizethe above example, our
table shows the definitions to calculate one of the roots off(x) = x3 + 2x2 − 3x+ 4 in the neighborhood of−3.

After evaluatingX2 and copying its contents dynamically into the cells below it, setting the precision to 15 deci-
mals (and widening the column size), we get the following table:

A B C D X
1 1 2 −3 4 −3.000000000000000
2 −3.333333333333330
3 −3.285403050108930
4 −3.284278150031770
5 −3.284277537307130
6 −3.284277537306950
7 −3.284277537306950
8 −3.284277537306950
9 −3.284277537306950

The Reader can verify that the last four elements of sequencein the table are equal, at least in numerical sense.

Theoretical considerations can prove that the speed of convergence becomes quadratic for this process, if the
approximation is close enough to the limit. Quadratic convergence means that the number of the correct decimals
in the above sequence is approximately doubling in each step. I.e., after the integer part inx1 andx2 has 0 correct
digits, butx3 has 2,x4 has 5, andx5 has 11.

Unfortunately,x1 has to be selected carefully. Surprisingly enough, puttinge.g.3 into it, we get a slightly different
process:
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A B C D X
1 1 2 −3 4 3.000000000000000
2 −1.888888888888890
3 1.088816972312120
4 1.193955741621468
5 1.852001854926000
6 1.058953573619320
7 0.134294516934989
8 0.880535307620495
9 −0.380554160315144

and so on, the sequence got mad, seems to become chaotic. Indeed,x1 = 3 is far from the only root off , but how
do we know what is far enough here?

There is nothing special in this example above, this is the normal case. There aremanyinitial points forx1 which

generate strange behavior. Two points
(

x1 = −2±
√
13

3

)

will surely stop the process by generating a “division

by zero” error, due tof ′(x) = 0, but there are also infinitely many points which result the same problem. By
non-polynomial examples forf we can also obtain divergence to infinity forxn as well.

3. All work and no play makes Jack a dull boy

Calculations are important in every day work, but to find interesting relationship between initial points we need to
play. It is not easy to find out when a givenx1 is capable of finding a root if we play only the real axis. To learn
about the background of this process we need the complex plane. Practically this will mean that we selectx1 not
only from the real line, but from anywhere fromC.

So let us do the following. Paint the complex plane using the following method:

• If a selectedx1 generates a well behaving process (i.e. convergence to a root) then let us paintx1 to a light
color.

• If x1 generates a fast convergence, it should be lighter than usual.

• If x1 generates something different (divergence or “division byzero”), it should be black.

Of course, for an exact painting we need to give precise definitions for the coloring algorithm. But this is just a
small detail, the structure of such a picture will be very similar to Figure 1.

Figure 1: The cubic Newton fractal
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The Reader can see that the complex plane is divided into manyparts, in which there is a different speed of
convergence for the different points, and the parts are bounded by thread-like creatures which are connected by
black knots. In short: this kind of calculation has a difficult geometry. But it is interesting enough for investigation
and to learn why this happens during the Newton-Raphson process.

To tell the truth, the above figure is not for the previousf(x), but a different one. It is for thef(x) = x3 − 1 = 0
equation. The three white circles show the neighborhoodof the third complex unit roots, and the center of the figure
is for the origin of the co-ordinate system. However this seems to be the simplest case for the cubic polynomials,
its geometry is complicated enough to learn the general behavior of the Newton-Raphson method, or, in other
words, to explore the cubic Newton fractal.

3.1. The x
3 − 1 case

Having a closer look on the Newton fractal, one can easily consider that there are infinitely many knots in the
picture. It is not difficult to find them by calculating the ‘bad’ x1 numbers, for which in a given stepn, f ′(xn) = 0,
and in the next step, the process will stop due to division by 0.

Obviously, ifx1 = 0, f ′(x1) = 3x2
1 = 0, sox2 cannot be calculated. Thus, 0 is a knot. No other ‘bad’ pointscan

be found which causex2 not able to be calculated, because the equationf ′(x1) = 3x2
1 = 0 has the only solution

x1 = 0.

Now let us search for thosex1 points which causex3 not able to be calculated. For that, clearlyx2 = 0 is a
necessary and sufficient condition:

0 = x2 = x1 −
f(x1)

f ′(x1)
= x1 −

x3
1 − 1

3x2
1

(5)

which implies3x3
1 = x3

1 − 1, and sox1 = 3

√

− 1
2 . Due to working on the complex plane, this will give three

different knots forx1:

(x1)1 =
3

√

1

2

(

cos
π

3
+ i sin

π

3

)

,

(x1)2 = −
3

√

1

2
,

(x1)3 =
3

√

1

2

(

cos
π

3
− i sin

π

3

)

.

(6)

These points can also be observed as vertices of an equilateral triangle (which has its center in the origin). These
three points, plus the origin give us four different knots until now.

But there are other knots as well. To find thosex1 points which causex4 unable to be calculated, we must check
x3 = 0 which means

0 = x3 = x2 −
f(x2)

f ′(x2)
= x2 −

x3
2 − 1

3x2
2

, (7)

so we obtain

(x2)1 =
3

√

1

2

(

cos
π

3
+ i sin

π

3

)

,

(x2)2 = −
3

√

1

2
,

(x2)3 =
3

√

1

2

(

cos
π

3
− i sin

π

3

)

.

(8)
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One can easily see thatx1 andx2 has a cubic polynomial relationship, which is exactlyx2 = x1 −
x3

1
−1

3x2

1

, that

is 2x3
1 − 3x2x

2
1 + 1 = 0. This gives at most three different solutions forx1 for each fixedx2. Thus, at most 9

differentx1 points exist for whichx4 cannot be calculated.

Continuing this reasoning, one can see that in general therewill be at most3m−1 differentx1 points for which
xm+1 cannot be calculated. Further investigations show that foreachm positive integer number there are exactly
3m−1 differentx1 points for which the Newton-Raphson method fails due to division by zero atxm+1. This
means, of course, that there are infinitely many knots for thef(x) = x3 − 1 case.

3.2. Exploring fractals

Fortunately, there are several software tools for exploring this new world generated by such simple formulas. One
of the most easy-to-use is XaoS [4], the free fractal engine which makes it possible for the user to view the world
of fractals in real-time zooming.

XaoS allows to visualize the common basins of convergence byusing the coloring method described above. Two
functions can be observed,f(x) = x3 − 1 andf(x) = x4 − 1. By using the left mouse button, the user can
zoom into any part of the fractal. By zooming, the user can verify by her experience that the knots are dense
at the connection of each thread-like creatures, moreover these creatures are the infinite network of the knots.
Self-similarity can also be well studied by utilizing this software, by gathering experience (see Figure 2).

Figure 2: Close-up of the cubic Newton fractal at−0.223 + 0.124i

Another approach for visualization is Sage [5], the free mathematics software system. The following Sage code
will generate the Newton fractal for an arbitraryf(x) function.
�

1 f ( x )= xˆ3−1
2
3 d ef i t e r a t i o n ( x1 , e p s i l o n , m a x i t e r ) :
4 x i =x1
5 f o r i in r ange ( m a x i t e r ) :
6 d f i =N( d i f f ( f , x ) . s u b s t i t u t e ( x= x i ) )
7 f i =N( f ( x i ) )
8 i f d f i <>0:
9 xn=xi− f i / d f i

10 i f abs ( xn−x i )<e p s i l o n :
11 re tu rn i
12 e l s e :
13 re tu rn m a x i t e r +1
14 x i =xn
15 re tu rn m a x i t e r +2
16
17 xmin=−2; xmax =2; ymin=−2; ymax =2; e p s i l o n = 0 . 1 ; s i z e =50; m a x i t e r =10

http://sage.math.u-szeged.hu/home/pub/82
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18
19 m= m a t r i x ( s i z e , s i z e )
20 f o r i 1 in r ange ( s i z e ) :
21 f o r i 2 in r ange ( s i z e ) :
22 x1=N( ( xmin+ i 1∗ ( xmax−xmin ) / s i z e + 0 . 0 ) + ( ymin+ i 2∗ ( ymax−ymin ) / s i z e +0 .0 )∗ i )
23 m[ i2 , i 1 ]= m a x i t e r+2− i t e r a t i o n ( x1 , e p s i l o n , m a x i t e r )
24 m a t r i x p l o t (m)


� �

This program calculates the iteration process for a set of initial points by calling theiteration subroutine with
three parameters:x1 is the startingx1 to be checked,epsilon is the convergence threshold andmaxiter is
the number of maximal iterations. The subroutine returns the needed number of iterations forx1 to approximate
the speed of convergence. If it is not possible withinmaxiter steps,maxiter +1 is returned. If a ‘division by
zero’ occurs, the subroutine returnsmaxiter +2.

The calculation process is much slower than in XaoS, and sometweaks were also needed in lines 6, 7 and 22 for
forcing numerical calculations instead of symbolic ones. For testing convergence the Cauchy criteria was used
(line 10). Figure 3 shows the Sage output forf(x) = x3 + 2x2 − 3x + 4, assumingxmin=-4; xmax=4;
ymin=-4; ymax=4; epsilon=0.1; size=400; maxiter=30 in line 17.

Figure 3: Sage output forf(x) = x3+2x2−3x+4 in the square determined by vertices4+4i,−4+4i,−4−4i,
4− 4i and1 + i, −1 + i, −1− i, 1− i

The Reader may try her own functions and generate the appropriate fractals. An Internet search should also offer
many beautiful images created by various researchers. One of the best galleries can be seen at [6].

4. The multivariate Newton-Raphson method

The above program listing can be developed to show a generalized result for the Newton-Raphson process for
multivariate equation solving.

To describe our problem by more variables, we can write
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f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

...

fn(x1, x2, . . . , xn) = 0.

(9)

Herex1, x2, . . . , xn are to be searched. (Usually more solutions may exist.) We will use the short notations

x =











x1

x2

...
xn











,

0 =











0
0
...
0











,

f(x) =











f1(x)
f2(x)

...
fn(x)











,

(10)

where all vectors consist ofn lines of components. Now our problem in (9) can be shortly written as

f(x) = 0. (11)

For solving (11) by the multivariate Newton-Raphson methodit is convenient to define

J(x) =













∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xn

...
...

. . .
...

∂fn(x)
∂x1

∂fn(x)
∂x2

. . . ∂fn(x)
∂xn













, (12)

usually called Jacobian matrix off(x). Now the multivariate Newton-Raphson method is defined by a “well
chosen”

x0 =











x0,1

x0,2

...
x0,n











(13)

initial point and the generated sequence of
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x1 =











x1,1

x1,2

...
x1,n











,

x2 =











x2,1

x2,2

...
x2,n











,

...

(14)

based on thex0 n-dimensional point. The calculation process is similar to (1) that can be described by

xn+1 = xn − (J(xn))
−1 · f(xn). (15)

(Note that (1) is a special case of (15) forn = 1.) Now we expect that the limit of this sequence (if exists),

x∞ =











x∞,1

x∞,2

...
x∞,n











,

...

(16)

is a solution of (11), or in other words (see (9)),

f1(x∞,1, x∞,2, . . . , x∞,n) = 0,

f2(x∞,1, x∞,2, . . . , x∞,n) = 0,

...

fn(x∞,1, x∞,2, . . . , x∞,n) = 0

(17)

is true.

This process is shown by a Sage application, similar to the univariate case.
�

1 va r ( ’ x , y ’ )
2 f = m a t r i x ( 2 , [ s i n ( x)−y , y ˆ2+ x ˆ2−1])
3 J= m a t r i x (SR , 2 , 2 )
4 f o r i in r ange ( 2 ) :
5 J [ i : i +1 ,0 : ]= j a c o b i a n ( f [ i : i + 1 , 0 : 1 ] , ( x , y ) )
6
7 d ef i t e r a t i o n ( x1 , y1 , e p s i l o n , m a x i t e r ) :
8 x i = m a t r i x (RDF, 2 , [ x1 , y1 ] )
9 f o r i in r ange ( m a x i t e r ) :

10 x i1 = x i [ 0 , 0 ]
11 x i2 = x i [ 1 , 0 ]
12 J i =N( J . s u b s t i t u t e ( x=xi1 , y= x i2 ) )
13 f i =N( f . s u b s t i t u t e ( x=xi1 , y= x i2 ) )

http://sage.math.u-szeged.hu/home/pub/83
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14 i f J i . d e t ()<>0:
15 xn=xi−J i . i n v e r s e ( )∗ f i
16 i f ( xn−x i ) . norm ()< e p s i l o n :
17 re tu rn i
18 e l s e :
19 re tu rn m a x i t e r +1
20 x i =xn
21 re tu rn m a x i t e r +2
22
23 xmin=−5; xmax =5; ymin=−5; ymax =5; e p s i l o n = 0 . 1 ; s i z e =200; m a x i t e r =10
24
25 m= m a t r i x ( s i z e , s i z e )
26 f o r i 1 in r ange ( s i z e ) :
27 f o r i 2 in r ange ( s i z e ) :
28 x1=N( xmin+ i 1∗ ( xmax−xmin ) / s i z e + 0 . 0 )
29 y1=N( ymin+ i 2∗ ( ymax−ymin ) / s i z e + 0 . 0 )
30 m[ i2 , i 1 ]= m a x i t e r+2− i t e r a t i o n ( x1 , y1 , e p s i l o n , m a x i t e r )
31 m a t r i x p l o t (m)


� �

The code tries to follow our notations described above, but some technical tricks here are also needed. We fill in
theJ matrix with derivatives off in line 5. Lines 28–29 work with normal coordinates forR2.

Our first test cases aref1(x, y) = sinx− y, f2(x, y) = x2 + y2 − 1. Figure 4 shows the output for the first view
and suggests that there are two solutions for this equation system.

Figure 4: Test case #2 (see the benchmarking table for details) for the multivariate Newton-Raphson method with
corners(−5,−5), (5,−5), (5, 5) and(−5, 5)

If we create a plot off1 andf2 (Fig. 5) it is obvious that these two solutions are the intersections of the sine
function and the unit circle,(x, y) = (0.88954, 1.79128) and(x, y) = (−0.88954,−1.79128).

Fig. 6 shows a detailed view of an interesting kind of behavior near(3, 3).

Another investigation was to find intersection points of theTschirnhausen cubic [7] and a parabola. Two of its
convergence graphs can be seen in Fig. 7.
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-4 -3 -2 -1 1 2 3 4

-1

-0.5

0.5

1

1.5

Figure 5: Intersections of the sine function and the unit circle. The black polyline and the red points show some
steps of the iteration

Figure 6: Test case #3 with corners(2.5, 2.5), (3.5, 2.5), (3.5, 3.5) and(2.5, 3.5)

4.1. Speed issues

Test f1(x, y) f2(x, y) xmin xmax ymin ymax ε size 1 maxiter Time
#1 sinx− y x2 + y2 − 1 −5 5 −5 5 0.01 21 20 13
#2 sinx− y x2 + y2 − 1 −5 5 −5 5 0.01 201 20 1163
#3 sinx− y x2 + y2 − 1 2.5 3.5 2.5 3.5 0.01 201 20 1261
#4 y2 − x3 − 3x2 x2 − y − 4 0 1 0 1 0.01 11 10 4
#5 y2 − x3 − 3x2 x2 − y − 4 0 1 0 1 0.01 101 10 325
#6 y2 − x3 − 3x2 x2 − y − 4 0 1 1 2 0.01 201 15 2021

This table shows that the obtained figures require a remarkable amount of time to be generated by Sage. (The used
architecture was an Intel Pentium 4 2×2.8 GHz with 2 GB of RAM, Debian 5.0 Linux and Sage 4.1.1 installed.)
Time is measured in seconds, the benchmarking output has been provided by thetime command in Sage.

There may be additional speedups to be done (e.g. changing Line 14 to check if|detJ | < ε) but it seems that for
getting as fast output as XaoS gives we require a different technology in the background. Of course, to get first
impressions about the geometry of the multivariable Newton-Raphson process, Sage gives an acceptable output.
The Reader may read more on comparing the speed of Sage to other computer algebra systems (Mathematica 7,
Magma and Matlab 2009a) at [8].

1Due to a bug inmatrix plot in Sage PNG output, such sizes must be used to get nicely labeled axes.
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Figure 7: Basins of convergence and divergence of the Newton-Raphson method for finding intersec-
tion points of the Tschirnhausen cubic and a parabola with corners (−4,−4), (4,−4), (4, 4), (−4, 4) and
(0, 1), (1, 1), (1, 2), (0, 2) (test cases #5 and #6)

5. Stability and some notes on theoretical background

The above calculation shows that it is difficult to predict how the approximation sequence behaves, even for quite
simple problems. However, it is obvious that a large set of well behaving initial points can be given for each
question. Such a question we can also consider as adynamical systemwhich is defined by the sequence generator
formula and the initial point. In other words, to find the cuberoot of a given complex number, we can take a
dynamical system which generates different sequences for different initial points.

The set of initial points that generate a convergent sequence are calledstablepoints of the dynamical system.
Stable points are important for practical reasons, but other points can also be interesting for mathematical artists.
Indeed, non-stable points have unusual geometrical properties, and are exciting to explore.

Theoretical considerations can lead to remarkable resultsin finding general estimations for the speed of conver-
gence. For example, if the derivative of thef function is always non-zero in a large enough neighborhood of the
initial point, and the second order derivative off is bounded, theory can ensure that the initial point will move on
a well predictable orbit. This means that if we choose the initial point close enough to a root off , we will get the
root fast enough for practical use. The Reader can find more in[1] and [2] on this. Some highlighted details of the
proofs and further output figures can be viewed on [3].

6. Conclusion

Fractal geometry plays an important role in studying mathematical background of every day life processes. The
Newton-Raphson method is an often used technology in calculating roots of equation systems. Its convergence
graph, showing the “good” starting points and the “bad” ones, is both an interesting visualization for the sciencists,
and also a warning for the end users of the applied numerical methods to use the underlying technology carefully.

Fractal software developers may investigate how the multivariate Newton-Raphson can be implemented to be
reasonably faster than usual CAS methods to obtain the geometrical views in a shorter time.
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