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In this paper we present the introduction of the notion deltadistribution with special accent on its historical remarksand
visualization, by using programme packageGeoGebraand its dynamic properties.In order to make clear and understand-
able the properties of delta sequences we prepared 15 Figures, with the graphs of corresponding functions, mostly given
in integral forms. The Figures are exported fromGeoGebra, as eps files, and the properties of the notions connected with
the delta sequences are explained geometrically. Under each Figure the hipelink leading to the corresponding animation
in GeoGebrais given.

1. Introduction

Generalized functions or distributions constitute a space(in mathematical sense- locally convex vector space)
adapted for solving partial differential equations. Actually there are many spaces of generalized functions, consti-
tuting of distributions, of ultradistributions, of hyperfunctions, of microfunctions,.... All of them serve as frame-
works for various methods in the theory of partial differential equations, especially in the microlocal analysis.

Generalized function theory and the microlocal analysis are pretty complicated theories. At least, several years
of PhD studies are necessary for understandig these fields. On the other hand, both theories are motivated by the
explanations of natural phenomena and the foundation of natural laws and of many consequences which follow
from these laws.

A great importance of the generalized function theory and a long period needed for the study require the introduc-
tion of basic notions of the theory in modern university courses of analysis on different levels of studies.

2. How delta had appeared?

The most important ”function” which was used, in the beginning in the fields of theoretical physics and today in
almost all sciences, is the so called ”delta function”. In the end of 19. century, Heaviside, and later Dirac in the
20-es of the last century used the formal calculus with deltafunction although they did not have a clear knowledge
about it. But they used this calculus with great success. This is evident from the fact that delta function, certainly,
is not a function.

In their approach this is a ”function” with the properties

f(x) = 0, x 6= 0, f(0) = ∞,

∫ ∞

0

δ(x)dx = 1.
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For mathematicians, it is known that such a function does not exist (it must be zero, but then integral may not be
equal to one).

Until the thirties of the last century, mathematical foundations were not done. Then in papers of Sobolev and later,
around fifties, of Schwartz were given mathematically correct theories in which delta distribution has a complete
and clear mathematical sense.

2.1. Applications

In other sciences delta distribution is used for the description of the white noise, the set of all sounds, or white
light, the set of all light frequencies, or black holes, or delta shocks (which appear with earthquakes tsunamis...).
We can see now-days that in the “up to day” literature of engineers the delta distribution appears as a non-voidable
notion in the analysis of concrete models (equations), in the signal transfer, signal boost, in the picture detection
and the texture removal of a picture and so on. How to find various school of fish in ocean by the use of sound
signals which they produce but which have very low intensity. For example, it can be done by the use of the white
noise signal, the stochastic process with the covariance equalsδ(x−y); the extended sound signal is registered and
then by the decomposition of the signal (we know the white noise) we conclude what kind of fishes is detected.

2.2. Equations

Spaces of generalized functions are the natural framework for various kinds of partial differential equations Models
used for the description of various natural phenomena often (the most often) are formed through differential
equations which show the dependence of the change of unknown variables from the known ones. (The measure of
the change is the differential of the corresponding function; so the name differential equations.)

Equations often, by their names, express where they are used. Hamilton’s equations of classical mechanics,
Equation of the radioactive decrease in nuclear physics, wave equation, equation of the heat conduction, Ginzburg-
Landau equation is used in modelling superconductivity, Maxwell’s equations in the electromagnetism, Einstein’s
fields equations in general relativity, The Schrödinger equation, the heart of non-relativistic quantum mechanics,
Navier Stockes equation in the fluid dynamics, Lotka- Volterra equation in population dynamics, Black-Sholes
equation in mathematical finance, Vidal -Wolf advertising model, linear and nonlinear compartment models in
pharmacokinetics.

2.3. History

Mathematicians and physicists to whom we are delightful the most for the theory of generalized functions are O.
Heviside (1850-1925) who developed the operational calculus in solving differential equations, P. M. A. Dirac
(1902-1984) who introduced (∼ 1925) Dirac’s ”bra- cat” calculus in mathematical physics, S. Sobolev (1908-
1986) who introduced (∼ 1930) the notion of weak derivative in the investigation of weak solutions of hyperbolic
systems and we are delightful the most to L. Schwartz (1920-2003) who developed (∼ 1950) distribution theory
and in general functional analysis in the direction of partial differential equations. He left to the society an excellent
monograph which is studied even today within post-graduated studies in the theory of linear and nonlinear PDE
(partial differential equations). Their theories had given a strong impulse to the theory ofΨDE (pseudodifferential
equations) as well as to the theory of Fourier integral operators which were developed by Calderon, Zygmund,
especially Hörmander, then Gelfand, Stein, Boni, and their collaborators.

The approach to the theory of generalized functions, developed by quoted mathematicians is so-called functional
analysis approach (by the use of duality).

Another approach to generalized function theory, based on the theory of functions of many complex variables
and the cohomology theory was introduced by M. Sato and his pupils T. Kavai and M. Kashiwara. Sato formu-
lated (∼ 1960) his hyperfunction theory and the theory of microfunctions (through germs of distributions and
hyperfunctions).
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In this context it is needed to mention the name of H. Komasu who developed ultradistribution theory and who
connected approaches of Schwartz-Hörmander on one side and the approach of Japanese school of Sato, on another
side.

3. Delta distribution

Functions act on points:
x 7→ f(x), y 7→ f(y)..., x 7→ g(x), y 7→ g(y)...

but points also act on functions

f 7→ x(f) = f(x), g 7→ x(g) = g(x)..., f 7→ y(f) = f(y), g 7→ y(g) = g(y)...

(This is a good point to understand functional analysis, in general)

So let us write
〈f, x〉 = f(x) = x(f).

In a space with aσ −−algebraM Dirac’s measureδx0
: M → [0,∞) is defined by

δx0
(A) = 1 if x0 ∈ A, δx0

(A) = 0 if x0 /∈ A.

LetK be a space of smooth compactly supported test functions. Dirac’s delta functionδx0
: K → C

δx0
(φ) = 〈δ(x − x0), φ(x)〉 = φ(x0).

If one consider the characteristic function of a setA, κA and model this function near the boundary points ofA to
be smooth but very close to it, then one can imagine that Dirac’s measure equals Dirac’s distributions.

3.1. Basic notions

3.1.1. Spaces of test functions

A norm in a vector spaceX over the field of complex numbers is a mappingX ∋ x 7→ ‖x‖ ∈ [0,∞) with the
properties(x, y ∈ X,λ ∈ C)

1) ‖x‖ = 0 ⇔ x = 0,

2) ‖λx‖ = |λ|‖x‖,

3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The mappingd(x, y) = ‖x− y‖ is a metric.

If (X, ‖ · ‖) is complete, it is called a Banach space.

3.1.2. Spaces of test functions

Let ‖ · ‖∼µ , µ ∈ N, be different norms. Then

‖x‖m = sup
µ≤m

‖x‖∼µ (or ‖x‖m =

m
∑

µ=1

‖x‖∼µ or ‖x‖m = (

m
∑

µ=1

‖x‖∼µ
2
)

1
2 )

is an increasing sequence of equivalent norms.
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Define in(X, ‖ · ‖m,m ∈ N) a convergence structure by

xν → x0, ν → ∞, if ‖xν − x0‖m → 0, ν → ∞

for everym ∈ N.

Then(X, ‖ · ‖m,m ∈ N) is called a Fŕechet space if it is complete.

We can have scalar product in a vector spaceV : V × V ∋ (x, y) → (x|y) ∈ C with the properties

1) (x|x) ≥ 0 ∧ (x|x) = 0 ⇒ x = 0

2) (λx|y) = λ(x|y)

3) (x|y + z) = (x|y) + (x|z)

4) (x|y) = (y|x).

Then with‖x‖ = (x|x)
1
2 is defined a norm onV . If (V, (·|·)) is complete, it is called a Hilbert space.

Again with the family of scalar products(x|y)∼ν , ν ∈ N we have equivalent sequence of norms and we can again
assume that this sequence of norms is increasing.

Instead of norms we can have seminormsp : X → [0,∞)

1) p(x) = 0 → x = 0

2) p(λx) = |λ|p(x)

3) p(x+ y) ≤ p(x) + p(y).

We say that an (increasing) sequence of seminorms(pm)m∈N defines a Fŕechet structure inX if the spaceX with
these seminorms is Hausdorff and complete.

Denote byK a compact set inR (say a closed interval). ThenC(K) = C0(K)- the space of continuous functions
in K with the norm

‖φ‖0,K = sup
x∈K

|φ(x)|

andCm(K)- the space of functions having continuous derivatives up tothe orderm ∈ N with the norm

‖φ‖m,K = sup
x∈K,i≤m

|φ(i)(x)|

are Banach spaces.

3.1.3. Examples of test spaces

• 1. Fréchet spacesCm(R). LetCm(R) be the space of continuous functions inRwith continuous derivatives
up to the orderm ∈ N.

Then for anyK ⊂⊂ R (K is compact inR)

pm,K(φ) = sup
x∈K,i≤m

|φ(i)(x)|

is a seminorm but not a norm inCm(R).

Take(Kν)ν∈N to be increasing sequence of compact sets such that

∞
⋃

ν=1

Kν = R, Kν ⊂ Kν+1.

ThenCm(R) with the sequence of seminorms(pm,Kν
)ν∈N is a Fréchet space.
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• 2. Banach spacesCk
0 (K) Let φ ∈ C(R). The support of a functionφ is defined as

suppφ = {x;φ(x) 6= 0}.

We defineCk
0 (K) to be the subspace ofCk(R) containing functionsφ which are supported byK. Then

‖φ‖k,K = supx∈R |φ(i)(x)| is a norm andCk(K) is a Banach space.

• 3. Fréchet spaceC∞
0 (K) If k = ∞, thenφ ∈ C∞

0 (R) means thatφ has all derivatives continuous onR and
suppφ ⊂ K for some compact setK.

LetK ⊂⊂ R be fixed. Define inC∞
0 (K)

‖φ‖ν = sup
x∈K,i≤ν

|φ(i)(x)|.

Then(‖ · ‖ν)ν∈N is a sequence of norms andC∞
0 (K) is a Fréchet space with these norms.

• 4. Fréchet spaceS(R) Let φ ∈ C∞(R). Define a sequence of norms

‖φ‖k = sup
x∈R,i≤k

(1 + |x|2)k/2|φ(i)(x)|, k ∈ N.

Then
S(R) = {φ ∈ C∞(R); ‖φ‖k <∞}

equipped with this sequence of norms is a Fréchet space. It is called the Schwartz space of rapidly decreasing
functions.

Let us note that the definition ofD(R) is not given in this article; for the calculus with delta distributions in this
article the Schwartz spaceS(R) is sufficient.

3.1.4. Dual spaces

LetX be a test space (which means we have a norm or a sequence of norms inX).

ThenX ′ is the space of linear continuous mappingsf : X → C, i.e.

f(αφ+ βψ) = αf(φ) + βf(ψ)

and
φν → φ in any norm impliesf(φν) → f(φ)

For (X, || · ||), f ∈ X ′ iff
∃M > 0 : |f(x)| ≤M ||x||, x ∈ X (∗)

||f ||X′ = inf{M : such that(∗) holds}

= supx 6=0
|f(x)|

||x||X
= sup||x||≤1|f(x)| = sup||x||=1|f(x)|

For (X, (|| · ||ν), f ∈ X ′ iff
∃M > 0 ∃ν0 ∈ N : |f(x)| ≤M ||x||ν0

The same holds if we have seminorms.

Let
Cfin = {f ∈ C(R) : lim

|x|→∞
f(x) = 0}

and
||f || = sup

x∈R

|f(x)|.

Then this is a Banach space and its dual(Cfin)
′ = M is the space of Radon measures.

S ′ = L(S,C) is the space of tempered distributions.
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3.1.5. Examples of measures and distributions

Let f be a function onR so that
∫

R
|f(x)| dx <∞. Then

Cfin ∋ φ 7→

∫

R

f(x)φ(x) dx : φ 7→ f̃(φ) =< f, φ >

is continuous and linear.

So,f̃ ∈ M andf̃ ∈ S ′. Note,M  S ′.

If f(x) = Pn(x) is a polynomial of degreen, then

f̃(ϕ) =

∫

R

f(x)ϕ(x)dx, ϕ ∈ S

is an element ofS ′ but not ofM.

Any functionf bounded by a polynomial defines̃f ∈ S ′ by

f̃(ϕ) = 〈f̃ , ϕ〉 =

∫

R

f(x)ϕ(x)dx.

3.1.6. The Dirac distribution

But there exist measures and tempered distributions which are not defined by ”ordinary” functions.

For example,

ϕ 7→ ϕ(0) = 〈δ, φ〉, ϕ ∈ Cfin is in M

ϕ 7→ ϕ(0) = 〈δ, φ〉, ϕ ∈ S is in S ′

3.1.7. Differentiation in S ′

Differentiation inS ′ is defined by
〈f ′, ϕ〉 = −〈f, ϕ′〉.

If f, f ′ are continuous and bounded by polynomials, then

f 7→ f̃ ∈ S ′ f ′ 7→ f̃ ′ ∈ S ′

〈f̃ ′, ϕ〉 = −〈f̃ , ϕ′〉 = −

∫ ∞

−∞

f(x)ϕ′(x)dx

〈f̃ ′, ϕ〉 =

∫ ∞

−∞

f ′(x)ϕ(x)dx.

Since
∫∞

−∞
f ′(x)ϕ(x)dx = −

∫∞

−∞
f(x)ϕ′(x)dx, we havẽ(f ′) = (f̃)′.

3.1.8. The Heaviside function

The Heaviside function

H(x) =

{

1, x > 0
0, x ≤ 0

defines a distribution.
H(x) 7→ H̃(x)
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〈H̃, ϕ〉 = H̃(ϕ) =

∫ ∞

−∞

H(x)ϕ(x)dx =

∫ ∞

0

ϕ(x)dx.

We haveH̃ ′ = δ :

〈H̃ ′, ϕ〉 = −〈H̃, ϕ′〉 = −

∫ ∞

0

ϕ′(x)dx = ϕ(0) = 〈δ, ϕ〉.

3.1.9. Convolution

Forϕ, ψ ∈ L1
loc(R) let

(ϕ ∗ ψ)(x) =

∫

R

ϕ(x− t)ψ(t)dt =

∫

R

ϕ(t)ψ(x − t)dt

If ϕ, ψ are functions equal to zero on(−∞, 0) then

(ϕ ∗ ψ)(x) =

∫ x

0

ϕ(t)ψ(x − t)dt

4. On the visualization of the delta sequences

4.1. The function given by integral

In this part we shall draw the graph of the function given by the integral

F (t) =

∫ t

0

f(x)dx, t > 0, (1)

for given functionf . Let us remark that in relation (1) the functionF depends on variablet, but in order to make
visualization of definite integral we have to take care aboutthe variablex, too. This problem can be solved by
using dynamic programme packages, as for example,Mathematica, GeoGebra,and so on. By usingsliders in
mentioned programme packages one can consider parameters besides the variables, and the parameters can be
changedalmost continuously. In our work we shall use the programme packageGeoGebra.Since the variablex,
in relation (1), can not be fixed, we considert, as a parameter.

Figure 1:Function defined by integral

This means that the slider has to be introduced, first, to be denoted byt, and then the value of the function
F (t) =

∫ t

0 f(x)dx can be determined for each value oft. Since this definite integral geometrically represent area,
for eacht, it can be visualized, too. The graph of the functionF can be obtained by using the trace of the point
(t, P (t)), whereP represent the corresponding area under the graph off .

./figure01.ggb
http://www.geogebra.org/cms/
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On Figure 1 we consider the functionf(x) = x2, x > 0, and the area (under the parabola) given by

F (t) =

∫ t

0

x2dx =
1

3
t3, for fixed t = 4.2,

which is colored. By changingt, (Figure 2) using the corresponding slider, one obtains different values for area. If
we introduce the pointA(t, P (t)), and include the trace, then we shall get the points on the graph of the function
F.

Figure 2:Function defined by integral2

It is interesting to consider the visualization of the logarithmic function given in form of definite integral

F (t) =

∫ t

1

dx

x
, t > 0. (2)

On Figure 3 it is drawn the graph of the function

f(x) =

{

0 x < 1
1
x x ≥ 1

,

Figure 3:Logarithmic function,x > 1

and the slidert ∈ [1, 50] is introduced. It is shown that the pointA(t, f(t)) with the trace belongs to the curve
F (t) = ln t, t ∈ [1,∞). The graphs of these piecewise defined functions can be drawn by using commandif.

./figure02.ggb
./figure03.ggb
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On Figure 4 we consider the function given by integral (2), for 0 < t ≤ 1. It is interesting to remark that the in
this case the functionF is negative, but the corresponding area is drawn as the positive one.

By clicking on the corresponding links one get directly the visualizations in GeoGebra. The dynamic properties of
this package can be used to show the visualization of resented process. Namely, by hanging the values oft, (using
slidert) one can follow the trace of the pointA(t, f(t)).

Figure 4:Logarithmic function,0 < x < 1

On Figure 5 it can be seen that the graph of exponential function f(x) = ex, x ∈ R is obtained as the inverse
curve of the graph of logarithmic function. Namely, each pointA′ is the inverse one of the pointA, which belongs
to the graph of logarithmic function.

Figure 5:Exponential function,x > 1

./figure04.ggb
./Figure3e.gbb
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5. On the visualization of the convolution of the functions

Let us consider the convolution of two functions locally integrable functionsf andg given by

(f ∗ g)(t) = (g ∗ f)(t) =

∫ t

0

f(t− x)g(x)dt. (3)

As it is told before the functionsf andg are equal zero forx ∈ (−∞, 0).

The functionf ∗ g is defined by definite integral, representing area under the graph of the functionf(t− x)g(x).

For example, if we take the the functionsf(x) = ex, g(x) = x2, then their convolution can be considered as:

P (t) =

∫ t

0

et−xx2dx = et
∫ t

0

e−xx2dx = et
(

2− 2te−t − t2e−t − 2e−t
)

= 2et − 2t− t2 − 2, t > 0.

Figure 6:The Convolution of two functions

On Figure (6) we consider the graphs of functionf , g, andf ∗ g, and the value ofP , for fixed t = 3.4. Let us
remark that in this case, the area representing convolutionP is the area under the graph of function

h(t) = f(t− x)g(x) = et(e−xx2).

Figure 7:The Convolution of two functions

./figure06.ggb
./figure07.ggb
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On Figure (7), the graph of functionr(t) = 2et − 2t− t2 − 2, and the trace of the point(t, P (t)), are drawn. Of
course, the pointA belongs to the graph of ther.

5.1. On the visualization of Delta sequences

Delta sequences are functional sequences(δn(x))n∈N satisfying the following:

1. lim
n→∞

δn(x) = δ(x);

2. lim
n→∞

∫∞

−∞ δn(x)g(t− x)dx = g(x), for local integrable functiong.

In this paper we shall consider the following delta sequences:

δn(x) =

{

n2 − nx, x ∈ [0, 1
n ], 0, x > 1

n
n− n2x, x ∈ [− 1

n , 0], 0, x < − 1
n

, (4)

δn(x) =
sin((n+ 1/2)x)

2.4πsin(x/2)
; x ∈ [−

2π

2n+ 1
,

2π

2n+ 1
]. (5)

δn(x) =
1

2
ne−n|x|; (6)

δn(x) =
1

π

n

enx + e−nx
, n ∈ N. (7)

It can be proved that all previous functional sequences satisfy the following conditions:

1. lim
n→∞

δn(0) = ∞;

2.
∫∞

−∞ δn(x)dx = 1, for eachn.

Next, we shall show this properties visually by using packageGeoGebra.

On Figure 8 we present the example (4), and we denote byh the term of corresponding delta sequence, for fixed
n. It can be seen thatP = 1, andpoly1 = 1, means that

∫ 1/n

−1/n

h(x)dx = 1, for each n.

By increasingn they−coordinate of vertexA, of triangleABC is becoming greater and is tending to infinity, but
thex−coordinate of verticesB andC are tending zero.

Let us remark that the functions of two or more variables, in packageGeoGebra, are considered as the function
with only one variable, because the other variables are treated as parameters and they are presented with the sliders.
Therefore, in our visualization process, we shall write thesame notions as it is done inGeoGebra, in order to make
it easier.
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Figure 8:The delta sequence given by (4)

On Figure 9 it is visually shown, for the example (4), that

∫ 1/n

−1/n

h(x)g(t − x)dx→ g(t), (8)

whenn is increasing, forg(x) = x2.

Namely, first the graph of the functionf(x) = h(x)g(t − x), for fixed parametersn andt, is drawn, and then the
integral, representing convolution (8), denoted byP is drawn, coloring the area under the graph ofh. Further, the
pointD(t, P ), for fixedn andt is drawn.

For example, forn = 2 we can seen the points ordered byA, with the trace included, are very closed to the graph
of g. It can be followed, by using sliders, that the point are morecloser to the same graph, with increasingn.

Figure 9:The delta sequence given by (4)

http://www.model.u-szeged.hu/etc/edoc/imp/SPilipovic/figure08.ggb
./figure09.ggb
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Let us remark that, in all previous examples, one can change the functiong and make the same dynamical process.

On Figure 10 it is visually shown, for the example (5), that

∫ ∞

−∞

h(x)dx = 1, for each n,

and the pointA(t, P1 + P2), with the trace, forn = 1..

In this case the functionsδn are not defined forx = 0 and therefore we had to consider separatelyP1 andP2

P1 =

∫ −.0001

− 2π
2n+1

h(x)g(t− x)dx, and P1 =

∫ 2π
2n+1

.0001

h(x)g(t− x)dx,

for n = 1 Figure 10, and forn = 6, Figure 11.

Figure 10:The delta sequence given by (5), forn = 1

On Figure 12 we applied the explained procedure for delta sequence given by

δn(x) =
sin(nx)

3.69x
,

and for the function

g(x) =
x2 − 1

x2 + 1
.

We determine the graph of the the function, which can be considered as the approximate one,for the functiong,
for n = 4, by usingSpreadsheet, andfitting curveproperty ofGeGebrapackage.

Namely, forn = 4 we denoted the points, formed thelist1 and usingfitting curvewe determined the ”green curve”,
which can represent the approximation of the graph of functiong.

./figure10.ggb
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Figure 11:The delta sequence given by (5), forn = 6

Figure 12:The approximations obtain by using delta sequence

./figure11.ggb
./figure12.ggb
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On Figure 13 we consider the delta sequence given by

δn(x) =
1

2
ne−n|x|,

and the function

g(x) =
x2 − 1

x2 + 1
,

and we obtain the corresponding points forn = 1 Figure 13, andn = 5 Figure 14

Figure 13:n = 1

Figure 14:n = 4

./figure13.ggb
./figure14.ggb
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Figure 15:The delta sequence given by (7)

On Figure 15 we consider the delta sequence given by

δn(x) =
1

π

n

enx + e−nx
, n ∈ N.

and the functiong(x) = ex, and draw the corresponding graph forn = 1 andn = 10.
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