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In this paper we present the introduction of the notion ddié&ibution with special accent on its historical remaaksi
visualization, by using programme packa&geoGebraand its dynamic properties.In order to make clear and utatets
able the properties of delta sequences we prepared 15 Ejguith the graphs of corresponding functions, mostly given
in integral forms. The Figures are exported fr@@oGebraas eps files, and the properties of the notions connectéd wit

the delta sequences are explained geometrically. Undbrggare the hipelink leading to the corresponding aninmatio
in GeoGebrais given.

Introduction

Generalized functions or distributions constitute a sp@tenathematical sense- locally convex vector space)
adapted for solving partial differential equations. Adliyithere are many spaces of generalized functions, consti-
tuting of distributions, of ultradistributions, of hyperictions, of microfunctions,.... All of them serve as frame
works for various methods in the theory of partial diffeiah¢quations, especially in the microlocal analysis.

Generalized function theory and the microlocal analyséspaetty complicated theories. At least, several years
of PhD studies are necessary for understandig these fieldthedother hand, both theories are motivated by the
explanations of natural phenomena and the foundation afraldaws and of many consequences which follow
from these laws.

A great importance of the generalized function theory arahg period needed for the study require the introduc-
tion of basic notions of the theory in modern university aag of analysis on different levels of studies.

2. How delta had appeared?

The most important "function” which was used, in the begnnin the fields of theoretical physics and today in
almost all sciences, is the so called "delta function”. le &nd of 19. century, Heaviside, and later Dirac in the
20-es of the last century used the formal calculus with deltation although they did not have a clear knowledge
about it. But they used this calculus with great successs itevident from the fact that delta function, certainly,

is not a function.

In their approach this is a "function” with the properties
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For mathematicians, it is known that such a function does not exist (it must be zero, but then integral may not be
equal to one).

Until the thirties of the last century, mathematical foundations were not done. Then in papers of Sobolev and later,
around fifties, of Schwartz were given mathematically correct theories in which delta distribution has a complete
and clear mathematical sense.

2.1. Applications

In other sciences delta distribution is used for the desoripdf the white noise, the set of all sounds, or white

light, the set of all light frequencies, or black holes, or delta shocks (which appear with earthquakes tsunamis...).
We can see now-days that in the “up to day” literature of engineers the delta distribution appears as a non-voidable
notion in the analysis of concrete models (equations), in the signal transfer, signal boost, in the picture detection
and the texture removal of a picture and so on. How to find various school of fish in ocean by the use of sound

signals which they produce but which have very low intensity. For example, it can be done by the use of the white

noise signal, the stochastic process with the covariance effualsy); the extended sound signal is registered and

then by the decomposition of the signal (we know the white noise) we conclude what kind of fishes is detected.

2.2. Equations

Spaces of generalized functions are the natural framewoxaf@ous kinds of partial differential equations Models

used for the description of various natural phenomena often (the most often) are formed through differential
equations which show the dependence of the change of unknown variables from the known ones. (The measure of
the change is the differential of the corresponding function; so the name differential equations.)

Equations often, by their names, express where they are used. Hamilton’s equations of classical mechanics,
Equation of the radioactive decrease in nuclear physics, wave equation, equation of the heat conduction, Ginzburg-
Landau equation is used in modelling superconductivity, Maxwell’s equations in the electromagnetism, Einstein’s
fields equations in general relativity, The Schrodinger equation, the heart of non-relativistic quantum mechanics,
Navier Stockes equation in the fluid dynamics, Lotka- Volterra equation in population dynamics, Black-Sholes
equation in mathematical finance, Vidal -Wolf advertising model, linear and nonlinear compartment models in
pharmacokinetics.

2.3. History

Mathematicians and physicists to whom we are delightful thstrfor the theory of generalized functions are O.
Heviside (1850-1925) who developed the operational calculus in solving differential equations, P. M. A. Dirac
(1902-1984) who introduced( 1925) Dirac’s "bra- cat” calculus in mathematical physics, S. Sobolev (1908-
1986) who introducedy 1930) the notion of weak derivative in the investigation of weak solutions of hyperbolic
systems and we are delightful the most to L. Schwartz (1920-2003) who developexd() distribution theory

and in general functional analysis in the direction of partial differential equations. He left to the society an excellent
monograph which is studied even today within post-graduated studies in the theory of linear and nonlinear PDE
(partial differential equations). Their theories had given a strong impulse to the thebBo{pseudodifferential
equations) as well as to the theory of Fourier integral operators which were developed by Calderon, Zygmund,
especially Hormander, then Gelfand, Stein, Boni, and their collaborators.

The approach to the theory of generalized functions, developed by quoted mathematicians is so-called functional
analysis approach (by the use of duality).

Another approach to generalized function theory, based on the theory of functions of many complex variables
and the cohomology theory was introduced by M. Sato and his pupils T. Kavai and M. Kashiwara. Sato formu-
lated ¢ 1960) his hyperfunction theory and the theory of microfunctions (through germs of distributions and
hyperfunctions).
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In this context it is needed to mention the name of H. Komasa déveloped ultradistribution theory and who
connected approaches of Schwartz-Hormander on one sidb@approach of Japanese school of Sato, on another
side.

3. Delta distribution

Functions act on points:
= flx),y = fY)..,z— g(@),y— gy)..
but points also act on functions
fea(f)=f(2),9 = x(g) =g(@)... f=>y(f) =), 9~ ylg) = 9(y).

(This is a good point to understand functional analysis gineyal)
So let us write

(fiz) = f(x) = x(f).
In a space with @ — —algebraM Dirac’s measuré,., : M — [0, o) is defined by

S0 (A) = 1if 29 € A, 6,,(A) =0if 29 & A.

Let K be a space of smooth compactly supported test functionacBidelta function,,, : K — C
Szo(¢) = (6(x — 20), P(2)) = P(x0).

If one consider the characteristic function of a dek 4 and model this function near the boundary pointsiad
be smooth but very close to it, then one can imagine that Biraeasure equals Dirac’s distributions.

3.1. Basic notions
3.1.1. Spaces of test functions

A norm in a vector spac& over the field of complex numbers is a mappikig> = +— ||z|| € [0, c0) with the
propertiegz,y € X,\ € C)

Dz||=0<2z=0,

2) Azl = [Alllll,

Mz +yll <l + yl-

The mappingl(z,y) = ||z — y|| is a metric.

If (X,]|l-])is complete, it is called a Banach space.

3.1.2. Spaces of test functions

Let| - [|7, # € N, be different norms. Then

[

~ ~ N2 1
lllm = sup [lz[l}; (or [|[lm = ZII%H or [[z[m = ZII:EH ?)

n<

is an increasing sequence of equivalent norms.
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Define in(X, | - |lm,m € N) a convergence structure by
Ty, = xo,v =00, if ||z, —xol|m — 0,v = 00
for everym € N.

Then(X, | - |lm,m € N) is called a Féchet space if it is complete.

We can have scalar product in a vector specel” x V > (z,y) — (z]y) € C with the properties
1) (z|lz) > 0N (z|]z) =0=2=0

2) (Azly) = Azly)

3) (zly + 2) = (z[y) + (]2)

4) (zly) = (yla).

Then with||z|| = (z|)* is defined a norm of. If (V, (-|-)) is complete, it is called a Hilbert space.

Again with the family of scalar products:|y);’, v € N we have equivalent sequence of norms and we can again
assume that this sequence of norms is increasing.

Instead of norms we can have seminogmsX — [0, o)
Dpx)=0—2=0

2)p(Ax) = [Alp(x)

3)p(x +y) < p(x) +p(y).

We say that an (increasing) sequence of semindms,.cn defines a Rfchet structure inX if the spaceX with
these seminorms is Hausdorff and complete.

Denote byK a compact set iR (say a closed interval). Thef(K) = C°(K)- the space of continuous functions
in K with the norm

[6llo,x = sup |¢(x)]
rzeK
andC™(K)- the space of functions having continuous derivatives upeémrdenn € N with the norm

Illm,c = sup |6 (x)]

zeK,i<m

are Banach spaces.

3.1.3. Examples of test spaces

e 1. Fréchet spaces™(R). LetC™(RR) be the space of continuous function&invith continuous derivatives
up to the ordern € N.

Then for anyK CcC R (K is compact inR)

Pmi(0) = sup |7 (a)]

zeK,i<m

is a seminorm but not a norm @™ (R).
Take (K, ),en to be increasing sequence of compact sets such that

G K, =R, K,CKy.

v=1

ThenC™(R) with the sequence of seminorms,, ., ).en is a Fréchet space.
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e 2. Banach spaces}(K) Let¢ € C(R). The support of a function is defined as
supp = {z; ¢(z) # 0}.

We defineC} (K) to be the subspace 6t*(RR) containing functiong) which are supported bj. Then
||k, i = sup,er |69 ()| is a norm and”* (k) is a Banach space.

e 3. Fréchet spac€j° (K) If k = oo, theng € C5°(R) means thap has all derivatives continuous @and
suppy C K for some compact seét’.
Let K CC R be fixed. Define irC§°(K)
ol = sup |61 (x)].

reK,i<v

Then(|| - ||, )ven is a sequence of norms anyf° (k) is a Fréchet space with these norms.
e 4. Fréchet spac&(R) Let ¢ € C*°(R). Define a sequence of norms
I8l = sup (14 |2*)*?|6@ (2)], k € N.

€R,i<k

Then
S(R) = {9 € C*(R); [|¢]lx < oo}

equipped with this sequence of norms is a Fréchet spasecdtled the Schwartz space of rapidly decreasing
functions.

Let us note that the definition @(R) is not given in this article; for the calculus with delta distitions in this
article the Schwartz spacqR) is sufficient.

3.1.4. Dual spaces

Let X be a test space (which means we have a norm or a sequence afinoXm
ThenX' is the space of linear continuous mappirfgsX — C, i.e.

flag + B) = af(¢) + Bf(¥)
and
¢ — ¢ inany normimplieg(¢,) — f(¢)

For (X, [|-1)), f € X"iff
IM >0 : |f(x)] < Mllz]|, ze€eX (%)

|[fllx: = inf{M : such tha{x) holds}
/()

|
SUParo = sup||g||<1|f(2)| = sup)jz||=1|f ()]

For (X, (|| - ||.), f € X"iff
IM > 03y €N | f(x)] < M||x||y,

The same holds if we have seminorms.

Let
Cfin ={f € C(R): lim f(z) =0}

and
[If]l = sup | f(z)].
z€R
Then this is a Banach space and its dé&,)’ = M is the space of Radon measures.

S" = L(S,C) is the space of tempered distributions.
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3.1.5. Examples of measures and distributions

Let f be a function oR so that, | f(x)| dz < co. Then

qm9¢kaéf@m@ym b (o) =< f,6 >

is continuous and linear.
So,f € Mandf € S'. Note, M ¢ &',

If f(z) = P,(x) is a polynomial of degree, then

f(o) = / f@)p@)dz, peS

is an element o’ but not of M.

Any function f bounded by a polynomial defingse S’ by

flo) = (F.g) = / f(@)p(x)d.

3.1.6. The Dirac distribution

But there exist measures and tempered distributions whech@ defined by "ordinary” functions.

For example,

= 9(0)=(0,9), ¢ € Cfp isinM
e (0)=1(¢), peS§ isins
3.1.7. Differentiationin S’
Differentiation inS’ is defined by

<flv(p> = _<f7(pl>'

If f, f are continuous and bounded by polynomials, then

f=fed ' fres
Fho) = —lieh == [ s @a

() = / Y @)@z,

Since[”_ f/(x)p(x)dz = — [7_ f(x)¢/ (x)dx, we have(f') = (f)'.

3.1.8. The Heaviside function

The Heaviside function

defines a distribution.
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o0

(o) =Hie) = |

— 00

H(x)p(x)dx = /000 p(x)dx.

We haveH'’ = § :

3.1.9. Convolution

Forp, v € Lj,(R) let

(o5 ) (x) = / ol — ()t = / () — t)dt

If ¢, are functions equal to zero dr-oo, 0) then

(o5 (@) = / " ()bl — e

4. On the visualization of the delta sequences

4.1. The function given by integral

In this part we shall draw the graph of the function given by ititegral

F(t) = /0 f@ds, >0, )

for given functionf. Let us remark that in relatiofl(1) the functiéhdepends on variable but in order to make
visualization of definite integral we have to take care altbetvariable =, too. This problem can be solved by
using dynamic programme packages, as for exan\iéghematica, GeoGebraand so on. By usinglidersin
mentioned programme packages one can consider paramegidedthe variables, and the parameters can be
changedalmost continuouslyln our work we shall use the programme packé&g®Gebra. Since the variable,

in relation [1), can not be fixed, we consideas a parameter.

A®

t=55
50

°
°
°
°
°
40 °
®
°

30

20

flo 1 2 3 4 5 6 7 8 9

Figure 1{Function defined by integral

This means that the slider has to be introduced, first, to Ioeted byt, and then the value of the function
F(t) = f(f f(z)dx can be determined for each valuefoBince this definite integral geometrically represent area
for eacht, it can be visualized, too. The graph of the functi®rcan be obtained by using the trace of the point
(t, P(t)), whereP represent the corresponding area under the gragh of


./figure01.ggb
http://www.geogebra.org/cms/

S.Pilipovi¢. Dj. Taka¢

On Figure 1 we consider the functigiiz) = 2%, = > 0, and the area (under the parabola) given by

t
1 .
F(t) :/ ridr = §t3, for fixed t = 4.2,
0

which is colored. By changing (Figure 2) using the corresponding slider, one obtairfeidint values for area. If
we introduce the pointi(¢, P(¢)), and include the trace, then we shall get the points on thengvkthe function

F.

35
30
25
20
15
10

5

O
g

0 1 2 3

4

t=4.86

t
P(t)=Jf(x)dx
0

5 6 7 8

Figure 2FuNction defined by integral2

It is interesting to consider the visualization of the laganic function given in form of definite integral

F(t)

On Figure 3 it is drawn the graph of the function

f(x)

o

1

{

T

gl= O

. t>0. (2)

r<l1
r>1"

Figure 3{LOogarithmic functiongz > 1]

and the slidet € [1,50] is introduced. It is shown that the pointZ, f(¢)) with the trace belongs to the curve
F(t) =1nt, t € [1,00). The graphs of these piecewise defined functions can be drawsiibbhg commandf.


./figure02.ggb
./figure03.ggb
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On Figure 4 we consider the function given by integtdl (2),(fo< ¢ < 1. It is interesting to remark that the in
this case the functiof' is negative, but the corresponding area is drawn as thayeosite.

By clicking on the corresponding links one get directly tigalizations in GeoGebra. The dynamic properties of
this package can be used to show the visualization of res@nteess. Namely, by hanging the values,dtising
slidert) one can follow the trace of the poidt(z, f(¢)).

t=5.23

Figure 4{LOogarithmic functionp < x < 1|

On Figure 5 it can be seen that the graph of exponential fomgt{z) = e, € R is obtained as the inverse
curve of the graph of logarithmic function. Namely, eachnpal’ is the inverse one of the poidt, which belongs
to the graph of logarithmic function.

t=6.18
—_——

Figure 5;EXponential functiong > 1|



./figure04.ggb
./Figure3e.gbb
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5. On the visualization of the convolution of the functions
Let us consider the convolution of two functions locallyeigtable functiong andg given by

(F*9)(t) = (g F)(t) = /O f(t - 2)g(z)dt. ®)

As itis told before the functiong andg are equal zero far € (—o0, 0).
The functionf « ¢ is defined by definite integral, representing area underietgof the functiory (t — z)g(x).

For example, if we take the the functiofiér) = e*, g(x) = 22, then their convolution can be considered as:

t t
P(t) = / e a?dr = et/ e " tde =€ (2—2te”t —t?e —2e7) =2" —2— > -2, t>0.
0 0

16 —
h(t)=f(t-x)g(x)d _ =34
14
12
10 t
8 P(t)=Jf(t-x)g(x)dx
0
6
4
2
0]
09%5 1 15 2 25 3 35 4 45 5 55 6 65 7

Figure 6:1/he Convolution of two functions

On Figure [[6) we consider the graphs of functifny, and f = g, and the value of, for fixedt = 3.4. Let us
remark that in this case, the area representing convolitimthe area under the graph of function

h(t) = f(t — 2)g(x) = €' (e~ "a?).

t=3.1
30 -
25 t
P(t)=Jf(t-x)g(x)dx
20 0
15
10
5
0]
pio o5 1 15 2 25 3 35 4 45 5 55 6 65 7

Figure 7.1he Convolution of two functions


./figure06.ggb
./figure07.ggb
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On Figure[(T), the graph of functior{t) = 2e* — 2t — t2 — 2, and the trace of the poirit, P(t)), are drawn. Of
course, the poin#l belongs to the graph of the

5.1. On the visualization of Delta sequences

Delta sequences are functional sequeriéggr))..c v satisfying the following:

1. lim 6,(z) = d6(z);

n—roo

2. lim [%_6,(x)g(t — x)dz = g(x), for local integrable functiop.

n—roo

In this paper we shall consider the following delta sequsence

[ n*—nz, =x€ 0,%], 0, J:>%
5"(z>{ n—nlx, x€ [—%,0]7 0, .I}<—% ’ (4)
~sin((n+1/2)z) L 2m
o (@) = 24rsin(z/2) = el 2n+ 1" 2n + 1]' ®)
1
On(z) = =ne~ "I, (6)
2
1 n
Op(r) = ——— neN. (7)

T ent 4 e—nz’

It can be proved that all previous functional sequencesfgatie following conditions:

1. lim 6,(0) = oc;

n—roo

2. [%_6n(z)dz = 1, for eachn.

Next, we shall show this properties visually by using paekagoGebra

On Figure 8 we present the examglé (4), and we denofethg term of corresponding delta sequence, for fixed
n. It can be seen thd? = 1, andpolyl = 1, means that

1/n
/ h(x)dx =1, foreach n.
—1/n

By increasing: the y—coordinate of vertex, of triangle ABC' is becoming greater and is tending to infinity, but
thexz—coordinate of vertice® andC' are tending zero.

Let us remark that the functions of two or more variables,ankageGeoGebraare considered as the function
with only one variable, because the other variables aréeiiiess parameters and they are presented with the sliders.
Therefore, in our visualization process, we shall writeghme notions as it is done@eoGebrain order to make

it easier.
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Figure 8: The delta sequence given byi(4)
On Figure 9 it is visually shown, for the examglé (4), that

1/n
/ W)yt — x)dz — g(t), ®)

—1/n

whenn is increasing, fog(z) = 2.

Namely, first the graph of the functiof(x) = h(z)g(t — z), for fixed parametera and¢, is drawn, and then the
integral, representing convolutidd (8), denotedibis drawn, coloring the area under the grapthofurther, the
point D(¢, P), for fixedn andt is drawn.

For example, fon = 2 we can seen the points orderedAywith the trace included, are very closed to the graph
of g. It can be followed, by using sliders, that the point are nooser to the same graph, with increasing

Figure 9{The delta sequence given by/|(4)



http://www.model.u-szeged.hu/etc/edoc/imp/SPilipovic/figure08.ggb
./figure09.ggb
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Let us remark that, in all previous examples, one can chdregiinhctiong and make the same dynamical process.
On Figure 10 it is visually shown, for the examgdlg (5), that
/ h(z)dz =1, foreach n,
and the pointA(t, P, + P), with the trace, fon = 1..
In this case the function$, are not defined for = 0 and therefore we had to consider separatghand P,

.—.0001 Takt
P = h(z)g(t — z)dz, and P, = / h(z)g(t — x)dx,

2m
T 2n+1 .0001

for n = 1 Figure 10, and for, = 6, Figure 11.

t=-2.3

fa

@

i

Figure 10{The delta sequence given by (5), o= 1|

On Figure 12 we applied the explained procedure for deltaessce given by

5o (z) = sm(mc),
3.69x
and for the function
(z) = E
glr) = .I'Q + 1 .

We determine the graph of the the function, which can be demnsd as the approximate one,for the funcion
for n = 4, by usingSpreadsheeandfitting curveproperty ofGeGebragpackage.

Namely, forn = 4 we denoted the points, formed tligt1 and usinditting curvewe determined the "green curve”,
which can represent the approximation of the graph of fangfi


./figure10.ggb
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Figure 11/ T'he delta sequence given by (5), 1ok 6|

Figure 12/ The approximations obtain by using delta sequence



./figure11.ggb
./figure12.ggb
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On Figure 13 we consider the delta sequence given by

1

5n(x) = Ene_n‘m‘v
and the function
2 -1
g(x) = 211

and we obtain the corresponding points#fot 1 Figure 13, anch = 5 Figure 14

Figure 14in. = 4|

15


./figure13.ggb
./figure14.ggb
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Figure 15{The delta sequence given by|(7)

On Figure 15 we consider the delta sequence given by

1 n

;76"1' +e_nz,n € N

on(x) =

and the functioy(x) = e”, and draw the corresponding graph foe 1 andn = 10.
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