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Abstract: The task of classical descriptive geometry is to produce precise, 
reconstructible drawings on three-dimensional figures; nowadays, in the case of 
drawings made by means of computer, this is often completed with  movable, 
interactive parts. This work is a brief introduction to the axonometric and 
perspective representation, the tools for preparing descriptive images, keeping 
in view some principal aspects. We discuss both the ruler-and-compass 
construction methods and those in which computers are applied. 
The emphasize is not on the tutorial aspects of a software made for such 
purpose, but rather, on its mathematical backgroumd. 
Our aim is that to develop a certain awareness of our readers, in the sense 
that they not only look at either a hand-made or a computer-produced 
drawing with more appreciative eyes, but they themselves be able to 
prepare such drawings, or, with suitable programming knowledge, their 
own softwares as well.  
There are files attached to almost all the drawings presented here, which were 
made by the dynamic geometry softwares, either Euklides or  Euler3D. 
These softwares can be downloaded, and basics for their use are also given here. 
We suggest our readers to study this writing together with interactive use of 
these softwares. 
 

1. The tools of descriptive geometry 
Nowadays the computers supply beautifully designed, moving, furthermore, interactively 
movable drawings of real, or just virtual, spatial figures. In most cases they unburden us 
of the construction of these drawings; at the same time, they also deprive us of the 
pleasure of drawing. One cannot be content with passive reception of the view; even if 
one cannot make such beautiful drawings, one should know what happens while a spatial 
figure is produced on the paper sheet or on the screen. We would like to develop such 
awareness of our readers, in the sense that they not only look at either a hand-made or a 
computer-produced drawing with more appreciative eyes, but they themselves be able to 
prepare such drawings. To this end, we will look over the basics of descriptive geometry.  

The task of descriptive geometry is to produce a clear, uniquely reconstructible image of 
spatial figures, such that one should be able to read out from it both the structural and 
metric data of the given geometric figure. Its method is the projection: one project the 
geometric figure to be represented onto one or more (image) plane (the plane of the paper 
sheet or of the screen) by straight lines, which are parallel, or start from a common point. 

If the primary aim of the representation is simpler constructibility, easy reconstructibility, 
or that the metric data should be faithfully represented, then the most suitable method is 
the Monge1 projection. If one applies, as usual, only two image planes, than in order to 
uniquely represent e.g. a polyhedron (a solid body with planar side faces), one has to label 
the vertices, and also the two distinct images of each of them. Without such labeling, one 

                                                            

1Gaspard Monge (1746–1818) French mathematician, after the French Revolution Minister of the 
Navy, military organizer.  
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cannot always reconstruct tha spatial figure just from thes two images. A third, side-view 
image may substantially contribute to the unique reconstructibility of the figure. 

 
The top view, front view and (right2) side view image of a polyhedron 

If the primary aim of the representation is descriptiveness, then the most suitable method 
is the axonometric, or perspective representation.  

   
 The axonometric and perspective drawing of the polyhedron above 

We would like to make the reader acquainted with the basics of the axonometric and 
perspective representation. One of the benefits of this may be some skill in preaparing 
such drawing. On the other hand, the drawings in the textbooks and on the screen of the 
computers are often axonometric or perspective drawings, thus an appreciative, or, 
sometimes, critical attitude towards such drawings is advisable. We will discuss the 
advantages and disadvantages of the different methods of representations, mostly via 
comparing the drawings made by these methods.  

                                                            

2 The attribute „right side” refers to the fact that the figure is projected from the direction of ones right 
hand to the  image plane located on left to the first two image planes; thus having unfolded the image 
planes to the plane of our sheet of paper, it will be located on the left hand side of our drawing.  
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2. Axonometry 

2.1. The basics of the axonometric representation 
The essence of the axonometric representation is that the spatial figure to be represented 
is placed in a spatial orthogonal coordinate system, then it is mapped by a parallel 
projection, along with the coordinate system, onto a plane, the so-called axonometric 
image plane.  

Let three pairwise perpendicular directed straight lines, x, y, z, be given in the space, 
incident to the origin, such that they form a so-called right-handed system3 in this order. 
Place in this so-called spatial orthogonal coordinate system a point P. Project it 
orthogonally onto the planes (x,y), (y,z) and (x,z). Then project the points P’, P’’ and P’’’ 
obtained in this way respectively, along with the point P and the axes, onto the plane of 
our sheet of paper (or screen) by a parallel projection, i.e. onto the axonometric image 
plane. (This latter cannot be parallel with the direction of the projection.) We call the 
images of the coordinate axes the axonometric frame of axes. Given any two of the points 
P, P’, P’’ and P’’’ in due manner, the other two can be constructed. “In due manner” 
means in this case that the lines of recall of the points must be parallel with the 
corresponding coordinate axes. Thus, for example PP’PyP’’ is a parallelogram whose 
sides are parallel to the axes X and Z, respectively (Py is the straight line going through P 
and parallel with the (x,z) plane). This requirement is essentially the same as that in the 
Monge projection the lines of recall must be perpendicular to the line of intersection of 
the image planes. 

O

P

Py
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Px

P'''

P''

Pz

x

z

y

 
The axonometric image of a point 

                                                            

3 “Right-handed” means that if we stretch the first finger, the central finger and the thumb of our right 
hand in (approximately) mutually perpendicular directions such that first finger points along the 
positive direction of the axis y, the thumb is along the direction of the axis x,  then the central finger 
points along the positive direction of the axis z. We note that this is a non-mathematical convention, 
just as we consider the counter-clockwise rotation in the plane positive.  
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The axonometric image of the point P can also be uniquely determined from the points Px 
, Py , Pz , the axonometric images of the projections of P onto the coordinate axes. In turn, 
these latter points can also be uniquely determined if the axonometric images of unit 
segments parallel with the coordinate axes are given. Essentially, the coordinates of the 
point P in the spatial orthogonal coordinate system are (Px, Py, Pz). One can say that the 
axonometric image of a point P given by its Cartesian coordinates is uniquely determined. 
On the other hand, can they be reconstructed as well? The answer to this question is given 
by the most fundamental relationship of the axonometric representation:  

POHLKE’S4 THEOREM:  
Let three line segments be given in the plane with common endpoints, of arbitrary 
length and direction. Then there are three pairwise perpendicular line segments of 
equal length in the space (such as for example three edges starting from a vertex of a 
cube) such that they can be mapped by a suitable parallel projection onto the given 
coplanar line segments.  

By parallel projection, the images of parallel lines are parallel (or coincident); hence any 
drawing that consists of three parallelograms, pairwise having a side in common, can be 
considered as an image of a cube obtained by parallel projection. In most cases such a 
projection is of course not orthogonal to the axonometric image plane (the plane of our 
sheet of paper). This causes a problem when considering such an image. For, a drawing is 
usually seen more or less in perpendicular direction. However, one should have look at it 
possibly at an oblique angle, and from a suitable direction, in order to see the image 
“properly”.  

The axonometry is called an obliqe (or clinogonal) axonometry if the direction of 
projection is not perpendicular to the image plane. One can easily draw a polyhedron in 
oblique axonometry, since one should only ensure that parallelity and length ratios are 
preserved on the image. On the other hand, one can seldom be satisfied with such a 
drawing, since it is not easy to find the direction in which it can be considered realistic. 

Choose a spatial orthogonal coordinate system such that its axes are the edge lines of a 
cube, and let the edges of the cube be of unit length. Then, by the theorem above, three 
arbitrarily chosen line segments in the plane with common endpoints correspond to the 
axes of this coordinate system, and are the images of the unit line segments on these axes. 
The ratio of the length of these segments and of the edges of the cube is called the 
foreshortening along the axes x, y and z, respectively. (This ratio can sometimes be larger 
than one; think of the evening shadow of a stick, which can be longer than the stick 
itself.) 

There is a so-called affine relationship between a planar figure and its parallel projection. 
For example, the affine images of the unit segments on the axes x and y starting from the 
origin are the (arbitrarily given) images of these segments. These together uniquely 
determine the affine map between the xy plane (in the space) and its axonometric image. 
Thus the axonometric image of a figure can be uniquely constructed from its Monge 
projection. 

                                                            

4 Karl Pohlke (1810-1876) German professor of descriptive geometry has formulated the theorem 
named after him in 1853, but he published it only in his book Darstellende Geometrie, 1860 (without 
proof).  
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The images of a concave polyhedron in oblique axonometry  

2.2. The cavalier perspective  
There is a frequently used particular case of the oblique axonometry, the so-called 
cavalier perspective, or cavalier projection (perhaps it is too frequently used). In this case 
the (xz) plane of the coordinate system is parallel with the axonometric image plane. Thus 
the foreshortening on the axes y and z is 1, while on the axis x (the direction of which can 
be arbitrary) it can be either smaller or larger then 1. (Usually it is chosen ½ or 2/3, but 
this is just a convention.)  

 
Cavalier axonometry 

In this way of representation the direction of the projection is necessarily oblique; for, if it 
were orthogonal, then we had merely a front view projection, which is of course not 
sufficient for the reconstruction of the original figure. 

The advantage of the cavalier perspective is that the details lying in the plane parallel with 
the (y,z) plane (it is said the front plane) are congruent with their axonometric images. It 
was initially used for military fortifications. In French, the “cavalier” (literally rider, 
horseman) is an artificial hill behind the walls that allows to see the enemy above the 
walls. The cavalier perspective was considered originally the way the things were seen 
from this high point. 

 

2.3. Orthogonal axonometry  
For the representation of a solid geometric figure the orthogonal (perpendicular) 
axonometry seems the most suitable tool, which projects the spatial coordinate frame, 
along with the figure placed in it, perpendicularly onto the axonometric image plane. In 
this representation (as in all other axonometric representation) the images of parallel and 
equal line segments are also parallel and equal; thus, for example, they are particularly 
suitable to represent the relationship between the edges of a polyhedron. At the same 
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time, since the drawings are obtained by orthogonal projection, when the images are seen 
in perpendicular direction, they almost look like the original solid figure. “Almost”, since 
actually a perspective image is produced in our eyes, in which parallel segments look not 
parallel (although from larger distance this “convergence” is imperceptible). On the other 
hand, our eyes ensure spatial vision, which a single drawing can never provide. We return 
to this later on. Now let us get acquainted with the orthogonal axonometry, on the one 
hand, in order to be able to make such drawings by ourselves. On the other hand, it is 
worthwhile to bear in mind that most of the images made by computer are produced in 
this way; thus it is appropriate to consider such a drawing “understandingly”. 

J Producing an orthogonal axonometric image by construction  
It is no matter from the point of view of the producing image where to place the spatial 
coordinate frame, along with the figure to be projected: it can be either behind or in front 
of the axonometric image plane. Now place it behind that, so that the axonometric image 
plane intersects the coordinate axes in the points A, B and C; these points are the vertices 
of the so-called trace triangle. 

Denote xt, yt, zt, Ot the spatial coordinate frame and its origin, and denote x, y, z, O, 
respectively, the orthogonal projections of these points on the plane ABC. Since the 
direction of projection is perpendicular to the image plane (the plane of the 
triangle ), then ΔABC Δ⊥ ABCOOt . Hence Δ⊥Δ ABCTCOt , where . On 
the other hand, since 

ABCOT ∩=
( ) Δ=⊥= tt zCO

ΔtABO
tABOtt yx , thence . Thus, 

since both , and  is perpendicular to 
Δ⊥Δ tABOtTCO

ΔABC ΔTCOt , thence so is their line of 
intersection; hence . This means that all the straight lines of ABTCOt ⊥Δ ΔTCOt

BC⊥ BO
are 

perpendicular to AB; thus, . Likewise, one can see that and ABCO ⊥ AO CA⊥  
also holds. 

   

A B

C

T

O
(O)

d

d

d

x
y

z

 

Image plane angles in orthogonal axonometry 

 Our result means that the lines of altitudes of the ΔABC  will be the projections of the 
orthogonal projections of the axes, and its orthocentre will be the point O.  

Accordingly, an orthogonal axonometric system can be given by  

• the images of the three axes; 

• the acute trace triangle ABC; 

./ortax1.euk
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• the obtuse triangle AOB. 

In all these three cases one obtains the trace triangle ABC, whose orthocentre is O.  

Our task is to construct from these data the foreshortenings of the orthogonal axonometry, 
i.e. the images of the unit line segments on the spatial coordinate axes. Instead, we shall 
construct the image plane angles, i.e. the angles between the spatial axes and the image 
plane. For, if one wants to measure a segment on any of the axes, it will suffice to 
measure this segment on one of the sides of the image plane angle belonging to the given 
axis; then the orthogonal projection of this segment on the other side will just be a 
segment whose length provides the desired foreshortening.  

The image plane angle belonging to the axis zt will be the angle of the triangle 
TCOt. To construct this, it suffices to rotate the right triangle 

TCOt

ΔTCOt into the image plane 
(i.e. our sheet of paper). Its hypotenuse CT, as well as the orthogonal projection of its leg 
is just on our drawing. The triangle ( ) ΔTOC  obtained by constructing the Thales' circle of 
CT contains the desired ( )O CO� ; on the other hand, as a “by-product”, we obtained the 
distance , which is usually called the distance of the orthogonal 
axonometry.  

( ) OOOd t== O

The same construction could also be performed for obtaining the image plane angles 
belonging to the other two axes. But, since the distance d is already known, one can easily 
construct the right triangles, whose one leg is AO, respectively BO, and the leg opposite 
to the desired image plane angles is d. 

By the time we performed this construction, our drawing became too crowded with lines, 
hence it is not suitable to give in the same drawing the axonometric image of the figure to 
be represented. Thus it is worth to use a separate sheet, on which the axonometric images, 
as well as the plane angles are copied, in order to concentrate just to the figure to be 
represented (in our case, a polyhedron). 

The purpose of the construction above was in fact to obtain the foreshortenings along the 
coordinate axes. Knowing them, the geometric figure (the polyhedron) can be drawn in 
the same way as in oblique axonometry, but in this case our drawing will seem more 
realistic. Since essentially we constructed the plane angles of the coordinate axes, this can 
be exploited to the purpose on ”placing” on an axis not only the unit segment, but an 
arbitrary segment as well. 

The foreshortenings of the coordinate frame can also be obtained in other way, with a 
simpler construction, at the expense of somewhat deeper consideration. In addition to 
constructing these segments, we also give a transformation formula. Given a point by its 
coordinates, this formula yields the coordinates of its image (in the plane of the computer 
screen); thus our readers with some skill in programming may produce the axonometric 
image of a polyhedron on the screen as well. 

J Producing the axonometric image by computer 
The essence of the consideration is that given the unit segments OtXt, OtYt, OtZt on the 
axes of the spatial orthogonal coordinate system, one positions them with respect to the 
image plane; then one constructs their orthogonal projections onto this plane. Besides, we 
calculate coordinates of the endpoints of these segments with respect to coordinate system 
of the screen.  

What is it with respect to which a spatial figure is moving on the screen of the computer 
(even if actually we move it)? The programmers consider a coordinate system fixed to the 
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screen (in other words, to the image plane), as well as a moving spatial coordinate system 
in which the figure (actually, a polyhedron) in question is described. When producing an 
axonometric image (either by constructing by ruler and compass, or by calculation with 
computer), one has to determine, for a point given in the moving coordinate system, its 
image in the fixed coordinate system. 

Let be denoted the axes of the fixed coordinate system (i.e., those of the image plane) by 
u and v (the horizontal and vertical axis, respectively). Temporarily, also consider this 
coordinate system spatial, thus denote its third axis, perpendicular to the image plane, by 
w (this is directed towards us if the system (u, v, w) is right-handed). 

We first locate Ot, Xt és Yt in the plane of our sheet (screen) so that the origin of the two 
coordinate systems coincide, the point Yt lies on the axis u and the point Xt lies on the axis 
v. In this case the vector OtZt is also perpendicular to the image plane, and is directed 
towards us, provided that our spatial coordinate system is right-handed, too. Then, the 
coordinates of te points under investigation are:  

( )
( )
( )

t

t

t

X 0, 1, 0

Y 1, 0, 0

Z 0, 0, 1

= −

=

=

.

.

.

 

The point Xt still coincides with the point C of the image plane, and Yt with B, where A, B 
and C, D are the points lying on the axis u and v, respectively, at a unit distance from the 
origin.  

M

A BV

X

Y

Z

O=Zt

C
Xt

Yt

Xh

Yhk

D

 
Applying two rotations, any other position of the spatial coordinate system with respect to 
the image plane can be attained, different from that in which the image of the axis z is the 
vertical axis of the image plane. First, rotate the this latter system about its own axis 
zt=OtZt by an angle . Since we use a spatial rotation, it is a bit more difficult 
to determine the direction of the rotation. We use the convention that the rotation is 
considered positive if it positive as seen from the direction opposite to the vector 

tCOXϑ = �

tOZ
uuuur

 
(i.e., the vector of the axis of rotation). In this case this means that, while the axis zt is 
kept fixed, we see the points  Xt and Yt moving in negative direction whenϑ is increased. 
(We fixed this direction and angle, since most of the softwares which move spatial figures 
do the same.)  

Then the endpoints of the vectors of the spatial unit vectors are: 
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( )
( )
( )

t

t

t

X sin , cos , 0 .

Y cos , sin , 0 .

Z 0, 0,

= − ϑ − ϑ

= ϑ − ϑ

= 1 .

 

 

Let the other rotation be a rotation by an angle ϕ about the axis u=OB. During such a 
rotation the point Zt moves along a circle which is perpendicular to the axis u, and hence 
to the image plane; the diameter of this axis is CD. At the same time, the point Xt moves 
along a circle of radius ϑcos in a plane parallel to the former, and Yt moves along a circle 
of radius ϑsin  (the diameter is XhXt, and YhYt respectively).  

By a ruler-and-compass construction, or, for example, by the dynamic geometry software 
EUKLIDES, one easily obtains the (orthogonal axonometric) image of our spatial 
coordinate system. Let BOMϕ = � , where M is an arbitrary point of the circle k. The 
image of the point Zt, lying on the axis v, is the perpendicular projection of the point M on 
CD; it is Z. 

Since the plane (xy) rotates together with the axis z, the perpendicular projection of each 
point of the plane (xy) gets closer or farther to the axis u of the image plane at the same 
ratio as the perpendicular projection of the point M on the axis u (i.e., V) to the origin: 

.h h

t t

X X Y Y AV
XX YY VB

= =  

This can be made clearer by a drawing which shows the image plane from ”side-face”:  

 

 
 

Accordingly, the endpoints of the spatial unit vectors in the coordinate system az (u, v, w) 
are:  

( )
( )
( )

t

t

t

X sin , cos cos , cos sin .

Y cos , sin cos , sin sin

Z 0, sin , cos

= − ϑ − ϑ⋅ ϕ ϑ⋅ ϕ

= ϑ − ϑ⋅ ϕ ϑ⋅

= ϕ

.

.

ϕ

ϕ

)

 

Here the first two coordinates are the coordinates of axonometric image of the unit 
vectors.  Given a point , its axonometric image ( zyxPt ,, ( )vuP ,  can be calculated by the 
follolwing formula:  

  10
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u x sin y cos .
v x cos cos y sin cos z sin .

= − ⋅ ϑ + ⋅ ϑ
= − ⋅ ϑ⋅ ϕ − ⋅ ϑ⋅ ϕ + ⋅ ϕ

 

As a ”side-product”, we obtained how far the point P is from the image plane:  

 

cos sin sin sin cos .w x y zϑ ϕ ϑ ϕ= ⋅ ⋅ + ⋅ ⋅ + ⋅ ϕ  

This data is needed when want to draw on the screen a perspecive image.  

The users of the attached two EUKLIDES files may observe that in the first one the rotation 
of the figures about the axis z can be achieved by moving the point F, while tilting, that is, 
rotating about the axis u of the screen, is achieved by moving the point V. To this 
purpose, we used only horizontal movement of the point F, and vertical movement of the 
point V. These can also be drawn together.  

 

  
The images of a polyhedron in orthogonal axonometry. 

This is made in the other file, where both rotations can be achieved by moving a single 
point M. The same is done by most softwares which move spatial figures, included Euler 
3D, too, where the figure can be moved using pushed mouse button.  

 

 
The image of a polyhedron in orthogonal axonometry made by Euler 3D. 

Moving the Euler 3D drawing above, one may observe that in the bottom row there are 
two parameters changing. These are just the values of the angles ϕ  and ϑ  given in 
degree. The same coordinates are used in geography as well.  

One may say that an orthogonal axonometric image in general position is most suitable 
for visualizing solid geometric figures. A ”professional” graphic artist, who for example 

./ortax1.euk
./something.elr


12  L. Szilassi 

undertakes making figures of textbooks, can be expected to prepare such a drawing, but a 
mathematics teacher cannot be be expected to do so. A simpler way for the latter is to use 
the ”technical axonometry”. It is a special case of the oblique Axonometry, which which 
surprisingly well approximates a drawing made in orthogonal axonometry with axes in of 
prescribed direction.  

In this axonometry the slope of the axis x is 
8
7  and that of the axis y is 

8
1

− . With this 

setting of axes, the foreshortenings along the axes y and z in the orthogonal axonometry 
are almost the same, and, along the axis x it is approximately half of the former. Thus one 

does not make great error if the foreshortenings are taken as 1;
2
1

=== zyx qqq , 

respectively.  

8

7

x

z

1

8

y

 
Cube represented in orthogonal axonometrxy as well as in technical axonometry 

 

J The isometric axonometry  
The construction of a drawing in orthogonal axonometry provides a ”right” representation 
for almost all positioning. But there are also special cases of the orthogonal axonometry. 
One can most easily construct a drawing in isometric axonometry, where the images of 
the axes subtend an angle of 120 degrees pairwise with each other. This results in the 
same foreshortening along each axis, thus one does not need to deal with its construction. 
For example, in this way of representation the images of the closest and farthest vertex of 
a cube coincide; this may provide an idea of drawing an ”impossible” triangle, which one 
can meet in the art of Escher.  
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M.C. Escher: Relativity 

   
Escher’s triangle and a cubein the isometric axonometry 

One may criticize the orthogonal axonometry because of lack of ”perspectivity”, that is, 
the straight lines that are parallel to each other in reality do not converg to each other. 
This problem can be solved by the perspective representation. In the next section we get 
acquainted with its basics, together with its advantages and disadvantages as well.  

 

3. Perspectivity 

3.1. Constructing a perspective image  
The perspective representation also uses a single image plane, called the perspective 
image plane, where the projecting lines are incident to a common point, the centre of 
projection.  

 

Consider the perspective image plane p vertical. The object to be represented (in our case, 
a cube) is placed on a ”horizontal” plane, thus, on a plane perpendicular to the former. 
This is called the base plane. Furthermore, the object is within the half-space of the image 
plane opposite to the centre, so that, if possible, it has no face parallel to the image plane. 

./ortax3.euk


14  L. Szilassi 

The centre C is given by its perpendicular projection F on the image plane, and by its 
distance (d=CF) from the image plane, called the focal length; F is called the principal 
point. Moreover, the base plane is given by its line of intersection with the image plane, 
which is called the base line and is denoted by a. The plane going through the centre and 
parallel to the base plane is called the horizon plane, and its line of intersection with the 
image plane is the horizon line h. This latter is parallel to the base line and incident to the 
principal point.  

The height from which the figure placed on the base plane is seen is determined by the 
distance of the centre from the base plane. On the perspective image this is equal to the 
distance d(a,h) of the base line and the horizon line, which is called the height of the 
horizon.  

The image e’ of a line e lying in the base plane is the intersection of the plane (Ce) with 
the image plane. There is a special point of the line e’, the so-called the vanishing point 
( ), which is the point of intersection of the image plane with the line going  through C 
and parallel to e: 

1I
π∩= eI1  . All the lines of the space parallel to e has the same 

vanishing point; in other words, all the lines parallel to e intersect each other in this point. 
The vanishing points of the lines lying in the base plane or parallel to it are incident to the 
so-called horizon line (h), which is the line of intersection of the image plane with the 
plane going through the centre and parallel to the base plane.  

The edges of the cube determine three distinct directions, one of which in the present case 
is parallel to the perspective image plane; therefore, there is no vanishing point belonging 
to this direction. 

 
The mutual position of the perspective image plane, the centre, base plane and of the drawn figure.  
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The vanishing points I1, I2 belonging to the other two directions form a right triangle 
together with C, such that its altitude belonging to the hypotenuse is the focal length 
d=CF.  

Let us rotate the base plane about the base line into the perspective image plane (i.e., the 
plane of our paper sheet).  Also, rotate the horizon plane about the horizon line in the 
same direction. During this rotation, a point P of the base plane describes the circular arc 
P(P) with centre T, while the centre C describes the circular arc C(C) with centre F. The 
legs of these arcs are parallel: PT CF and ( ) ( )P T C F ; thus these arcs are in homothetic 
position. 

 

One may equally well say that there is a central collineation5 between the perspective 
image of the base plane and its rotate about the base plane. The centre of this collineation 
is the rotate of the centre of the representation about the horizon line; its axis is the base 
line; in addition, its vanishing line is the horizon line.  

Conversely: if one produces the perspective image of the base plane, or a figure within it, 
from the rotate of the base plane (respectively a figure in it) into the image plane, then the  
vanishing line of the central collineation in question is naturally the horizon line. 

This provides the possibility to construct the so-called ”Möbius6 net” provided that the 
rotated image of a square lying in the base plane, as well as the rotate of C about the 
horizon h is given. This net is the perspective image of a square grid. For, if one knows 
the points of intersection of the cube edges lying in the base plane (i.e. the intersection 
points of these edges with the base line), then ”scaling” the base line with the segments 
determined by them, one just has to connect the points in the base plane with the 
corresponding vanishing point. 

                                                            

5 Central collineation is a projective geometric transformation. Here we do not discuss it and 
possibilities of its practical application. 

6 August Ferdinand Möbius (1790–1868). Astronomer, professor of mathematics at the University of 
Leipzig. His name is best known today for his topological construction, the so-called Möbius strip. 
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The Möbius net 

The image of the Möbius net (and, together with it, of any spatial figure) is determined by 
the following data:  

• the distance of the principal point from the base line;  

• the focal length d=CF, increasing or decreasing which the vanishing points get 
farther or closer to each other, respectively; 

• the angle subtended by the edges of the square in the base plane an by the base line; 
this also has an effect on the distance of the two vanishing points from each other. 
(Think of the fact that the triangle 21ICI  has to be constructed in fact from the 
altitude d=(C)F  belonging to its hypotenuse, and from the direction of one of its 
legs!) 

By drawing a sufficiently large part of the Möbius net, one easily obtains the ”ground-
plan” of our figure to be represented. One should construct the (suitably foreshortened) 
image of vertical segments lying on a line perpendicular to the base plane and intersecting 
it in the suitable grid point. These segments are seen in their original size only if they lie 
just in the base plane. Hence a line located elsewhere has to be ”carried out” in the image 
plane by a parallel projection (this means in fact a projection from a suitable vanishing 
point), then one has to put on there the real length of these segment, and to project them 
back to its place determined by the Möbius net. (The points of the base plane are carried 
to the base line through such a projection, thus in the image plane the distance of such a 
point from the base plane will be its–real– distance from the base line.)  

h

a

FI1 I2

 

J The role of the focal length and the principal point in the perspective representation 
Let us investigate some perspective image made from a well-known figure. It can easily 
be constructed from the drawing that in reality where is the centre C in the space from 
which the original figure was seen: it is above the principal point F, at a distance from 
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where the segment I1I2 can be seen at a right angle. This is not a large distance as 
compared to the size of the drawing. One could see the drawing realistic if one tried to 
look at it from that point. However, one cannot see sharply from such a distance.  

This is the largest drawback of the perspective representation: one can rarely look at a 
perspective image from the centre of projection. But seen from elsewhere, the perspective 
is ”distorted”.  

FI1 I2

 

             

FI1 I2

  

 

FI1 I2

 

             

F

 
The perspective image depends only on the mutual position  

of the represented object and the centre. 

./persp1.euk
./persp1.euk
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This is the largest drawback of the perspective representation: one can rarely look at a 
perspective image from the centre of projection. But seen from elsewhere, the perspective 
is ”distorted”.  

With decreasing the distance, one obtains more and more surprising images; this does not 
mean, however, that one did not construct the image well, but just that it is seen not from 
the proper point. 

If one took the centre to a distance from where a drawing is usually seen, then the 
vanishing points would get very far from each other as compared to the size of the 
drawing, so that they could not hold on our sheet. An important point of learning to draw 
is just to attain such a ”perspectivity experience”. Here one has also to be skilled in 
applying the laws of the perspectivity not only when using ruler and compass (or actually, 
computer), but when making free-hand drawing, and, accordingly, to properly use the 
vanishing points even if they are not really present on the drawing sheet. 

 

J Drawings with one, two or more vanishing points 
The drawings above are perspective images with two vanishing points: of the spatial 
orthogonal coordinate system, in which we positioned the figure to be represented, two 
axes intersect the perspective image plane, but the third do not. In fact, one can find as 
many vanishing points for a perspective image as there are lines in different directions not 
parallel with the image plane.  

In the figure below the one-point perspective image of a cube is seen, such that it is larger 
than the height of the horizon. 

FI1 I2

 
We would not undertake to discuss the role and importance of perspective in art and 
history of art; nevertheless, we call the attention of our readers to The School of Athens 
by Raffaello, which is a wonderful application of the perspective representation with one 
vanishing point. The only vanishing point of the fresco can be found at the point of 
contact of the bodies of the two great philosophers, Plato and Aristotle. 
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The School of Athens by Raffaello  

 

Our other example is concerned with the representation using three vanishing points. Here 
it is worth to meditate on that how important is the question „Which is the way of 
representation, which is the point from where the picture can be seen just like this?”  
Based on the artistic construction by Escher, the drawing below was made by means of 
computer: 

  
M. C. Escher: Three intersecting planes (woodcut) 

and its interactive realization with Euler3D programme  

The ”secret” of this work is that the artist applied a very close perspective, with large 
optical angle. 

3.2. Making a perspective image by computer  
Let us consider how to make a perspective image by computer (assumed that we could 
not leave it to an accomplished program). Having prepared the axonometric image of a 

http://www.google.hu/imgres?imgurl=http://www.bergoiata.org/fe/Escher/escher_csg033_three_intersecting_planes.jpg&imgrefurl=http://www.bergoiata.org/fe/Escher/25.htm&usg=__Q8u6EciiDjQyqhq7w32dms71hhg=&h=768&w=1024&sz=65&hl=hu&start=0&zoom=1&tbnid=cYyM5Xf9�
./Escher2.elr
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point placed in a spatial orthogonal coordinate sytem, to be precise, calculated its 
coordinate with respect to the coordinate system of the screen, let us see how one should 
modify these coordinates in order to obtain a perspective image. First we retrict ourselves 
to the case when the principal point coincides just with the origin the spatial and the 
planar coordinate system have in common. 

Let us look at the image plane from ”side-face”. Let d=CF be the distance between the 
centre C and the image plane (i.e., the focal length), where F is the principal point. Let t 
be the (signed) distance of the point P from the image plane, such that it is taken positive 
if P and C is located within the same half-space determined by the image plane. The 
image of P in orthogonal axonometry is its perpendicular projection to the image plane: 
Pax, while its perspective image is the intersection point of the image plane with the 
projecting ray through C: Pp. This latter exists of course only in the case if t<d, that is the 
ray [CP) from C intersects the image plane. In addition, denote K the perpendicular 
projection of P on the line (CF). 

CF

PPax

Pp

d

t

v

K

Képsík

d - t

    

CF

P Pax

Pp

d

t

v

K

Képsík

d - t

 
The points listed above are all in the plane (CFP). Since the triangles  és PKC are 
similar to each other, the relationship between their sides  PpF and PaxF (=PK) can easily 
be written:  

FCPp

.p ax
p ax

P F P FPK dP F P F
FC KC KC d t

= = ⇒ = ⋅
−

 

This relation is independent of the location of the point P in one or other half-space of the 
image plane, for t is taken to be a signed distance.  

One can read out from either the construction or from the formula above that the points 
lying in the plane through C and parallel with the image plane have no (finite) images. 

Using our formulas for the orthogonal axonometric projection of the point given by 
coordinates P(x,y,z) (and taken into consideration the equality t=w), the perspective image 
of the same point can be calculated by the formulas: 

( )
( )

( )
( )

d x sin ycos
u

d x cos sin ysin sin z cos

d x cos cos ysin cos zsin
v ,

d x cos sin ysin sin z cos

⋅ − ϑ + ϑ
=

− ϑ ϕ + ϑ ϕ + ϕ

⋅ − ϑ ϕ − ϑ ϕ + ϕ
=

− ϑ ϕ + ϑ ϕ + ϕ

 

where the centre of perspectivity is ”above” the origin, at a distance d. These formula can 
be extended by two further parameters if the principal point is carried over from the origin 
to the point   of the image plane. This is needed in the case when, for example, 
we want to ”have a better view” on the figure to be represented. In this case the point 
P(x;y;z) has to be shifted to the principal point by a vector 

( vu ffF ; )

( )vu ffOF ;= , then, having 
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calculated its perspective image there, it has to be shifted back to its original location by 
the opposite of the former vector:  

( )
( )

( )
( )

u
u

v
v

d x sin ycos f
u f

d x cos sin ysin sin z cos

d x cos cos ysin cos zsin f
v f

d x cos sin ysin sin z cos

⋅ − ϑ + ϑ −
= +

− ϑ ϕ + ϑ ϕ + ϕ

⋅ − ϑ ϕ − ϑ ϕ + ϕ −
= +

− ϑ ϕ + ϑ ϕ + ϕ
.
 

Using these relationships, one can easily produce either an orthogonal axonometric or 
perspective (wireframe) image of any polyhedron, with all software which is able to draw 
a line segment given by its endpoints.  

The programs that are (also) suitable for visualizing solid geometric objects, like for 
example MAPLE, MATHEMATICA, or the Euler 3D used here, unburden us of these 
calculations; furthormore, they also visualize the faces of a polyhedron, thus solving the 
hidden-line problem as well. Preparing a program which solves this task using the 
formulas above is still not useless. For, such a program provides a good possibility for 
experimenting, especially in producing perspective images. One can easily make ”good” 
or ”less good” images by a suitable, or, actually, a ”wild” choice of the principal point 
and the focal length. 

J Stereogram: the drawing providing spatial illusionzere 
There may be other by-product of this work, too. If one is able to produce wireframe 
perspective image, then it is easy to make a so-called stereogram from it, which provides 
a ”real” three-dimensional image. To this end, one has to apply two different centres at a 
suitable distance from each other. 

The objects are seen ”in space”, and we are able to distinguish their points closer and 
farther to us, on account of the fact that there are two distinct perspective images formed 
in our eyes, since these centres (i.e. our eyes) are at a distance of 7-8 cm from each other. 
The difference between these two images is larger or smaller when one look at an object 
closer or farther, respectively. This difference is processed by our brain so that, due to it, 
we are able to perceive the distance of the object from our eyes. Now one has to 
superpose on a single image plane a cyan perspective image made from the one centre, 
and a red one made from the other centre. Looking at such an image through red-cyan 
glasses, our eyes distinguish the two images, and our brain composes the spatial object for 
us. 

 

4. Comparison of the methods of representation  
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Let us return to Pohlke’s theorem. The theorem merely states that there exists a cube such 
that the parallel projection of its three edges starting from a common vertex are three 
arbitrary line segments in the image plane starting from a common point. Of course, this 
cube is not unique; for, each cube shifted in the direction of projection has the same 
image (the same is true for an arbitrary object, of course). But, apart from this fact, no 
spatial figure can be reconstructed merely from its wireframe axonometric image. For, the 
visibility of the figure can be indicated in two ways. The two images so obtained 
represent not the same figure, but one is the mirror mage of the other, with respect to a 
plane that is perpendicular to the direction of projection. In orthogonal projection this 
plane may be the image plane as well. Given a wireframe drawing, the reconstructibility 
can be made unique by a suitable choice of the hidden lines, or by giving the direction of 
the axes. Programs providing visualization of solid geometric figures, like for example 
Euler 3D, solve the hidden-line problem without the user’s intervening. This requires 
serious mathematical considerations.  

   
Two different figures with identical axonometric image 

In contrast, one cannot decide arbitrarily the hidden-line problem in the case of the 
perspective images. For, such an image provides some information concerning that given 
parallel segments of equal length, which is the closer one. Actually, this is seen larger. 
Using hidden lines contradicting to this rule is a serious professional error.  

In contrast, one cannot decide arbitrarily the hidden-line problem in the case of the 
perspective images. For, such an image provides some information concerning that given 
parallel segments of equal length, which is the closer one. Actually, this is seen larger. 
Using hidden lines contradicting to this rule is a serious professional error. 

   
Perspective images with right and erroneous hidden lines 

The cavalier perspective – although cubes, or figures composed of cubes, are easy to 
represent by it – results in an image as a cube is never seen actually. Draw the incircles of 
the square faces of a cube represented in cavalier perspective. The image of the circle in 
the front plane is a circle, but those of the other two are ellipses. In this representation a 
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cylinder inscribed in a cube does not give the impression as if it were a right circular 
cylinder; this is even more so if the circumscribed cube is not given in the drawing. 

    
Cylinders inscribed in a cube in cavalier perspective 

Let us draw the same configuration in orthogonal axonometry.  

        
Cylinders inscribed in a cube in orthogonal axonometry 

Observe that for any position of the right cylinder drawn in orthogonal axonometry, the 
extremal ruling of the image is always tangent to the ellipse which is the image of either 
the bottom or the top circle of the cylinder, so that the point of tangency is just the 
endpoint of the ellipse. 

Consider any image in orthogonal axonometry of a cylinder inscribed in a cube. Then the 
four focal points of the ellipses representing its top and bottom bases form a square. 
At last let us draw the same configuration in (a near) perspective.  

    
Perspective image of cylinder inscribed in a cube.  

For a circle, not only its axonometric image, but the perspective as well, is an ellipse , if 
the the point obtained as the perpendicular projection of the centre of representation on 
the plane of the circle falls outside of the circle. We remark, however, that while in 
axonometry the image of centre of the circle (in space) will be the centre of the 
corresponding ellipse, this is not the case in perspective representation. For, the 
axonometric image is provided by an affine mapping, which preserves the centre, but in 
central collineation (which provides the perspective image) the image of a circle is an 
ellipse such that its centre is the pole of the vanishing line of the collineation, with respect 
to the circle.  

Here we restricted ourselves to the toolkit of descriptive geometry; thus we did not 
mention the very effective tools of computer graphics, like shadow mapping, reflection 
mapping, etc., which are used for artistic representation of solid geometric figures. We 
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hope nevertheless that our contribution will help the reader to look on such works with 
more appreciative eyes.  

. 


