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Biostatistics is the application of mathematical statistics to medical and biological 
data. The methods are based on hard mathematics but their principle can be easily 
understood. The paper gives a short overview of the generalized linear models 
and describes the possibility of their application in medicine. The methods are 
illustrated by two practical examples. The first medical problem is the effect of 
intravenous lactate infusion on cerebral blood flow in Alzheimer’s disease. Here 
a mixed model repeated-measurement ANOVA was used to examine the effect of 
Na-lactate infusion in time. Using mixed model, the variance-covariance structure 
of repeated measures can modelled, and missing values can be taken into 
consideration. The SAS software was applied for calculations. The other medical 
problem is the investigation of risk factors of respiratory complications in 
paediatric anaesthesia using relative risk regression. Here, strong correlation was 
found between several independent variables. When the independent variables are 
correlated, there are problems in the estimation of the regression coefficients. To 
avoid multicollinearity, the structure of the correlation of the candidate variables 
used in the multivariate model was first examined by factor analysis, later new 
artificial variables were formed. The final multivariate model gave us the most 
important risks factors. Based on the model, children at high risk for 
perioperative respiratory adverse events could be systematically identified at the 
preanaesthetic assessment and thus can benefit from a specifically targeted 
anaesthesia management. 
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1. Introduction 
Statistics may be defined as a body of methods for learning from experience – usually in 
the form of numbers from many separate measurements displaying individual variations. 
Due to the fact that many non-numeric concepts, such as male or female, improved or 
worse, etc. can be described as counts, rates or proportions. The scope of statistical 
reasoning and methods is surprisingly broad. Nearly all scientific investigators find that 
their work sometimes presents statistical problems that demand solutions; similarly, nearly 
all readers of research reports find that the understanding of the reported results of a study 
requires a knowledge of statistical issues and of the way in which the investigators have 
addressed those issues.  

One characteristic of medical and biological research is that the examinations result in data 
generally described by numbers. Biostatistics provides methods that permit a description 
and summary of such so that consequences may be drawn from them. Biostatistics is an 
application of mathematical statistics to the evaluation of biological and medical 
experimental data. It is based on probability theory and mathematical statistics. 

Biostatistical methods are widely used in medical research. A scientific paper without such 
an evaluation is currently almost inconceivable. Moreover, the number of medical papers is 
increasing very rapidly year by year, while the evaluation of the experiments reported 
requires increasingly more sensitive methods. Meanwhile, the spreading of up-to-date 
knowledge is rendered more difficult by the specialisation at present going on throughout 
the medical profession.  

The aim of the present work is to give a short overview of the generalized linear models 
and describes the possibility of their application in medicine. The methods will be 
illustrated by two practical examples. 

2. The theory of generalized linear models 

The general linear model  

 Notation 

We denote random variables by upper case italic letters and observed values by the 
corresponding lower case letters. For example, the observations y1, y2, … yn are regarded as 
realizations of the random variables Y1, Y2, … Yn. We use greek letters to denote parameters 
and the corresponding lower case roman letters are used to denote estimators and estimates. 
Vectors and matrices, are denoted by bold face lower and upper case letters, respectively. 

For example, y represents a vector of observations , or a vector of random variables 

. β denotes a vector of parameters and X is a matrix. 
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 The general form of the linear model 
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The general form of the linear model is 

y = Xβ + ε, 
where 

y is an n x1 response vector, 

X is an n x p matrix of constants (“design” matrix), columns are mainly values  
of 0 or 1 and values of independent variables, 

β  is a p x 1 vector of parameters, and 

ε is an n x 1 random vector whose elements are independent and all have normal 
distribution N(0, σ2). 

For example, a linear regression equation containing three independent variables can be 
written as Y =β0 + β1 X1 + β2 X2 + β3 X3, + ε, or   

y= , X= , β=  ε=  
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Estimations of the regression coefficients βj  can differ when several models are fitted to 
data. Moreover, the test of the hypotheses βj =0 depends on which terms were included in 
the model. Estimates, confidence intervals and hypothesis tests usually depend on which 
variables are included in the model. There is an exception when matrix X is orthogonal. In 
that case hypotheses H01: β1=0,...,H0p: βp=0 can be tested independently.  

Orthogonality is perfect non-association between variables. Independence of variables is 
desired so that each addition of an independent variable adds to the prediction of the 
independent variable. If the relationship between independent variables is orthogonal, the 
overall effect of an independent variable may be partitioned into effects on the dependent 
variable in an additive fashion. 

 Models of ANOVA 

ANOVA can be modelled by the general linear model. 

 Model of one‐way ANOVA  

The model of one-way ANOVA can be written in the following form: 

tijiijiij njtiy ,...,1,,...,1, ==++=+= εαμεμ  

where  
yij  denotes the i-th element of the j-th sample,  

μ denotes the “overall population mean”,  
αi denotes the effect of the ith treatment, and  
εij denotes the random error, which is assumed to have N(0, σ2) distribution.  
μi denotes the of the ith population mean (treatment) 

The null hypothesis H0: μ1= μ2=...=μt that all population means are equal now corresponds 
to the null hypothesis that H0: α1=α2=...=αt. This is a linear model and it can be rewritten 
in a form of a linear regression: 
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ijttiiijiij DDDy εββββεμ +++++=+= −132210 ... ,     i=1,2,..,t,  j=1,2,…, nt, 

where the Di-s are “dummy” variables formed from the independent variables, for example, 
in the following way: 
Let the first group be a “reference” group. Then, let 

Di2=1 if an observation belongs in group 2; otherwise let Di2=0. 
Di3=1 if an observation belongs in group 3; otherwise let Di3=0. 
... 
Dit=1 if an observation belongs in group t; otherwise let Dit =0. 

Then, if an observation belongs in group 1:  
)0(...)0()0( 12101 −++++= tββββμ , i.e. 01 βμ = . 

If an observation belongs in group 2, then  
1012102 )0(...)0()1( ββββββμ +=++++= −t ;  

hence 112 βμμ += , and 121 μμβ −= . 
Similarly, the other coefficients are β1= µ2–µ1, …, βt-1= µt–µ1; i.e. regression coefficients 
are estimates of the differences between group means. The test of the null hypothesis 
H0:µ1= µ2=…=µt is equivalent to the test of the hypothesis H0: β1= β2=…= βt-1=0. 

 Two‐way analysis of variance 

In two-way analysis, we wish to assess the effects of two qualitative factors (independent 
variables) on a dependent variable. We call the groups of a factor the levels of that factor. 
The goal of two-factor analysis is to estimate and compare the effects of the different 
factors on the dependent variable. Depending on the particular situation, we may wish to 
learn whether there are statistically significant differences  

a) between the effects of the different levels of factor 1, 
b) between the effects of the different levels of factor 2, or 
c) between the effects of the different combinations of a level of factor 1 and a level of 
factor 2. Factors 1 and 2 interact if the relationship between the mean response and the 
different levels of one factor depends upon the level of the other factor. 

Let us denote the numbers of levels of factors 1 and 2 by t and l, respectively, and by N the 
total number of observations. The two-way ANOVA model is: 

ijijkijjiijk nkljtiy ,...,1,,...,1,...,1, ===+Θ+++= εβαμ  

where we use the following notations: 

yijk= the k-th observed value of the dependent variable when we are using level i of 
factor 1 and level j of factor 2, 

μ = an overall mean, (unknown constant), 
αi= the effect due to level i of factor 1 (an unknown constant),  
βj= the effect due to level j of factor 2, (an unknown constant),  
Θij = the effect due to the interaction of level i of factor 1 and level j of factor 2 (an 

unknown constant), 
εijk= the k-th error term when we are using level i of factor 1 and level j of factor 2 

(assumed to be distributed as N(0, σ2)). 
According to the above questions, the following null hypotheses can be tested: 

a) tH ααα === ...: 2101  

b) lH βββ === ...: 2102  
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c) 0:03 =Θ ijH  

In two-way ANOVA, the total sum of squares is decomposed into four terms, according to 
the effects in the model. The results are generally written into an ANOVA table which 
contains rows for the effects of factors 1 and 2, the interaction and the error term.  

The rows of this tables give the components for the effects of factor 1, factor 2, the 
interaction and the error term, while the columns contain the sum of squares, the number of 
degrees of freedom ((t-1), (l-1),  (t-1)(l-1) and (N-tl)), the variances (i.e., the ratio of sum of 
squares and the degrees of freedom), the F-values (variance ratio: effect variances to the 
error variance), and the p-value of F.  

There are three F-values in this table according to the three hypotheses.  

Question c), i.e. the significance of interaction, H03 is tested first. In case of no significant 
interaction, the significance of each of factors 1 and 2 can be tested separately. If H01 is 
rejected, we can say that at least two of the factor 1 means differ. If t, the number of levels 
of factor 1, is more than two, we again have to use multiple comparisons to find pairwise 
differences.  

In case of a significant interaction is significant, the relationship between the means of 
factor 1 depends on the level of factor 2. Multiple comparisons can be performed for each 
combination of one factor with a given level of the other factor. There are special methods 
against the increase of Type I error, because the use of t-tests independently is an incorrect 
solution. 

 

 ANOVA with repeated measurements 

The response to a drug treatment, for example, is often measured several times during or 
after administration of the drug, the intention being to compare treatments with respect to 
the trends in their effects over time and with respect to their mean levels of response. A 
widely used and general term is repeated measures data, which refers to data measured 
repeatedly on subjects either under different conditions, or at different times, or both. In 
ANOVA with repeated measurements, the repetition is expressed as a factor in the 
analysis, called the within-subject factor. Multivariate data refer to the case where the same 
subject is measured on more than one outcome variable. ANOVA with repeated 
measurements can be modelled using a univariate or multivariate approach. The results of 
the two approaches are not necessarily the same. 

Suppose there are N study units or subjects with ni measurements for subject i (e.g., ni 
longitudinal observations for person i or ni observations for cluster i). Let yi denote the 
vector of responses for subject i and let y denote the vector of responses for all subjects  
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A normal linear model is  

E(y)=Xβ=μ,  y ~ N(μ,V), 

where  
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Xi is the ni × p design matrix for subject i and β is a parameter vector of length p. The 
variance-covariance matrix for measurements for subject i is 
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and the overall variance-covariance matrix has the block diagonal form 
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assuming that responses for different subjects are independent (where O denotes a matrix 
of zeros). Usually the matrices Vi are assumed to have the same form for all subjects. 

There are several commonly used forms for the matrix Vi. For example: 

All the off-diagonal elements are equal: 
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This is appropriate for clustered data where it is plausible that all measurements are equally 
correlated, for example, for elements within the same primary sampling unit such as people 
living in the same area. The term ρ is called the intra-class correlation coefficient. If the 
off-diagonal term ρ can be written in the form σa

2/(σa
2 +σb

2 ), the matrix is said to have 
compound symmetry (CS). 

First order autoregressive  
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Unstructured correlation matrix: all the correlation terms may be different 
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The term repeated measures analysis of variance is often used when the data are assumed 
to be normally distributed. The calculations can be performed using most general purpose 
statistical software. Sometimes, the correlation structure is assumed to be either spherical 
or unstructured and correlations which are functions of the times between measurements 
cannot be modelled. 

The generalized linear model  

 Exponential family of distributions 

The distribution of a a single random variable Y belongs to the exponential family if it can 
be written in the form 

f(y,Θ)=s(y)t(Θ)ea(y)b(Θ) 

where a, b, s and t are known functions and θ is a single parameter of the distribution. The 
if the above equation can be rewritten as 

f(y,Θ)=exp[a(y)b(Θ)+c(Θ)+d(y)] 

where s(y) = exp d(y) and t(θ) = exp c(θ). If a(y) = y, the distribution is said to be in 
canonical form and b(θ) is sometimes called the natural parameter of the distribution. 

The exponential families include many of the most common distributions. For example, the 
Poisson, Normal and binomial distributions can all be written in the canonical form. 

 Generalized linear model 

A generalized linear model has three components: 

1. Response variables Y1, . . . , YN which are assumed to share the same distribution from 
the exponential family; 

2. A set of parameters β and explanatory variables 
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3. A monotone, differentiable function g – called link function such that 
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where 

)( ii YE=μ . 

 

 Examples. 
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 Normal linear models 

A special case of a generalized linear model is the model  

βxT
iiiYE == μ)(  

where Y1, ..., Yn are independent and distributed with N(μi,σ2). The link function is the 
identity function, g(μi) = μi. This model is usually written in the form 

y = Xβ + ε, 

where ε= , and the εi’s are independent, identically distributed random variables with 

N(0,σ2) for i= 1, ...,n. 
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 Logistic regression model 

Consider n independent binary random variables Y1, ..., Yn with P(Yi = 1) = πi and P(Yi = 0) 
= 1 − πi . The probability function of Yi can be written as 

ii y
i

y
i

−− 1)1( ππ  

where yi = 0 or 1. 

The general linear model is  

βxTg =
−
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where the link function is the logarithm of the odds π/(1−π),  called the logit function. 

This is equivalent to modelling the probability π as 
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If there is only one x explanatory variable which is also a binary variable, the model has the 
form  
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we get, that . Here OR is the so called odds ratio. Odds ratio is used in 
retrospective studies as the approximation of the relative risk.  

ORe =1β

 Relative risk regression model 
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Consider n independent binary random variables Y1, ..., Yn.  

The general linear model is  

βxTg == )log()( ππ  

where the link function is the logarithm of the π. 

If there is only one x explanatory variable which is also a binary variable, the model has the 
form  

( ) xxxg 10)(ln)( ββπ +==  

As 

 11010 )0()1()0()1( βββββ =⋅+−⋅+=− gg  

and 

)ln(
)0(
)1(ln)0(ln)1(ln)0()1( RRgg ==−=−

π
πππ  

we get, that . Here RR is the so called relative risk. Relative risk is used in 
prospective studies. 

RRe =1β

3. Application of generalized linear models to 
medical problems 

The effect of intravenous lactate infusion on cerebral blood flow in 
Alzheimer’s disease 

 The medical experiment 

Intravenous Na-lactate could provoke increased CBF in normal subjects and adults with 
panic disorder, sometimes with concomitant panic attacks. A self-control design was used 
and the regional CBF was examined on 20 mild-moderate demented, late-onset, sporadic 
AD probands. Serum lactate level, blood pressure, venous blood pH, pCO2 and 
bicarbonate, and serum cortisol levels were measured at 0, 10 and 20 minutes after 0.9 % 
NaCl or 0.5 M Na-lactate infusion on two separate days.  

Statistical model of two parameters are presented here: the venous blood pH and the 
systolic blood pressure (Figure 1). The other parameters can be analyzed in a similar way. 

 Statistical models and methods 

Mixed models [1] are not especially new but most of the statistical textbooks do not yet 
include discussion of mixed models. The PROC MIXED of SAS fits a variety of mixed 
linear models and so they have became one of the most frequently used and cited programs 
[3,4]. SPSS [5] contains various GLM models and mixed models. 
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Figure 1. Box plot of the examined parameters for the two treatments in three time points. The 
boxes indicate the interquartile range of observed data, the line partitioning box corresponds to 
median observation. The whiskers are drawn to 1.5 times the interquartile range. Points beyond 
that range are drawn individually. 

 
SAS and SPSS procedures were applied to the following models: univariate statistics, 
GLM univariate and multivariate tests and mixed models. In ANOVA models, there were 
two repeated measures factors: treatment (days) with 2 levels (NaCl or Na-lactate) and time 
with 3 levels (0, 10 and 20 minutes); both factors were fixed. 

Responses measured on the same subject are usually correlated; also, variances of repeated 
measures often change with time. In univariate ANOVA models a special form of the 
covariance matrix is supposed, namely, the so called sphericity assumption or its special 
case, the compound symmetry (CS) covariance pattern – assuming equal correlations 
among all pairs of measures and equal variances of the repeated measurements. In 
multivariate ANOVA models repeated measures are considered as co-ordinates of a 
multidimensional vector, here, equal correlations are not required, the covariance pattern is 
called unstructured (UN). Both univariate and multivariate ANOVA can be performed by 
the GLM procedure of SAS and SPSS. However, subjects with missing values are ignored, 
their assumptions about correlation structure are not always realistic and rarely hold. 

The method of mixed models can handle missing values, and a wide variety of covariance 
structures is available, for example, the first-order autoregressive structure {AR(1)}, where 
measures which are more proximate are more correlated than measures that are more 
distant. Covariance structures can be compared using several goodness of fit criteria. After 
selecting the appropriate covariance structure, inference on fixed effects is possible. If the 
examination the relationship of the response variable with time is in interest, a random 
coefficients model can be used. Here, regression curves are fitted for each patient and the 
regression coefficients are allowed to vary randomly between the patients.  

For the first parameter a mixed covariance pattern model was found to be the most 
appropriate with a composite covariance structure, that takes into account the doubly 
repeated nature of our data. For the second parameter a random coefficients model was 
used. 
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 Results and discussion 

For the first parameter, a significant “treatment by time” interaction was found by 
univariate,multivariate and mixed models (Table 1 and 2). As a final model, mixed model 
was used with a composite covariance structure. It was constructed by taking the 
Kronecker product of an unstructured matrix with a first-order autoregressive type 
covariance matrix, so we assume equal correlation between treatments and a first-order 
autoregressive type covariance structure between the three time points.  

Table 1. Results of  GLM for venous blood pH data 
 Univariate ANOVA Multivariate ANOVA 
 df1 df2 F p df1 df2 F p 

Treatment 1 16 11.277 0.004 1 16 11.277 0.004 
Time 2 32 20.718 0.000 2 15 19.651 0.000 

Treatment*Time 2 32 14.171 0.000 2 15 8.702 0.003 
 

Table 2. Results of  mixed models using different covariance structures for venous blood pH data 
Covariance structure Unstructured Composite  UN@AR(1) 

-2 Log L (number of  parameters) -500.4 (21) -454.2 (4) 
Fixed effects df1 df2* F p df1 df2* F p 

Treatment 1 18.8 14.14 0.0013 1 21.8 8.77 0.0073 
Time 2 18.6 22.21 <0.0001 2 38.6 15.86 <0.0001 

Treatment*Time 2 18.6 10.35 0.0010 2 47.8 14.22 <0.0001 
* Satterthwaite approximation for the denominator degrees of freedom 

For the second parameter, the increase of mean systolic blood pressure was not obvious by 
GLM. Because of missing values, results are based on data of only 18 patients. Here, 
univariate ANOVA results seem to be acceptable – because covariance structure 
assumptions hold, showing a significant time-effect. However, assumptions of the 
multivariate approach are more realistic, showing a non-significant time-effect (p>0.05). 
Using mixed models with CS and UN covariance structures, the p-values are closer. A 
random coefficients model with random coefficients for patients and patients*time was 
also used to express the relationship of the systolic blood pressure with time. This model 
resulted in a significant linear time-trend (p=0.028). 

Table 3. Results of  GLM for systolic blood pressure data 
 Univariate ANOVA Multivariate ANOVA 
 df1 df2 F p df1 df2 F p 

Treatment 1 17 0.028 0.868 1 17 0.028 0.868 
Time 2 34 3.492 0.042 2 16 2.736 0.095 

Treatment*Time 2 34 1.433 0.253 2 16 1.424 0.270 
 

Table 4. Results of  mixed models using different covariance structures for systolic blood pressure data 
Covariance structure Compound Symmetry Unstructured 

-2 Res Log L (number of  parameters) 858.6 (2) 815.6 (21) 
Fixed effects df1 df2* F p df1 df2* F p 

Treatment 1 89 0.02 0.653 1 18 0.14 0.717 
Time 2 89 2.93 0.058 2 18 3.70 0.045 

Treatment*Time 2 89 1.31 0.276 2 17 2.03 0.163 
* Satterthwaite approximation for the denominator degrees of freedom 

As a result for the other parameters, the serum lactate levels increased after the Na-lactate 
infusion and compensatory changes were found in the venous blood pH, pCO2 and HCO3 
levels [6]. 
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 Conclusion 

Medical experiments often result in repeated measures data. Using statistical software 
without knowing their main properties or using only their default parameters may lead to 
spurious results. Using only the default parameters simple models are supposed. Using 
carefully chosen statistical model may improve the quality of statistical evaluation of 
medical data. 

 

Investigation of risk factors of respiratory complications in paediatric 
anaesthesia 

 The medical experiment 

Perioperative respiratory adverse events (PRAE) remain one of the greatest concerns for 
the anaesthetist. Although some risk factors have been identified there is a lack of 
information about the relationship between the child’s/family history, the anaesthesia 
management and the incidence of PRAE. 

We prospectively included 9297 children over a 12-month-period having general 
anaesthesia. Data on the child’s/family medical history of asthma, atopy, allergy, upper 
respiratory tract infection (URI) and passive smoking were collected. Anaesthesia 
management and all PRAEs were recorded. 

 Statistical models and methods 

Univariate statistics were performed using Mann-Whitney U test and Chi-squared test for 
continuous and categorical variables, respectively. Multivariate models were developed for 
perioperative bronchospasm, laryngospasm and all other complications as dependent 
variables. Having many possible independent candidate variables, model development 
required variable selection to avoid problems of redundancy and overspecification. The 
choice of the independent variables in the multivariate models was based on uncorrected p-
values of the univariate tests (p<0.05) and on medical considerations: some statistically 
significant variables were not included into the set of candidate independent variables. 
Also, categorical variables with several categories were transformed to binary variables 
along the highest relative risk (RR) following the univariate testing. For the different 
complications, relative risk, absolute risk reduction and 95%CIs were calculated.  

It is well known that when the independent variables are correlated, there are problems in 
estimating model coefficients; the greater the multicollinearity, the greater the standard 
errors. To avoid multicollinearity, the structure of the correlation of the candidate variables 
used in the multivariate model was examined first by factor analysis and resulted in five 
factors 

Instead of producing new artificial variables by factor analysis, we collapsed original 
variables belonging to the factors using the „or” logical operator. These collapsed variables 
were used in the multivariate analyses together with age and airway management. 
Multivariate analysis was performed by relative risk regression, since this method is 
appropriate for modelling the risk factors of prospective studies. It involves a generalized 
linear model with log link function and binomial dependent variable. Model fit was 
assessed via likelihood ratio test using stepwise elimination process variables, possible 
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interactions with age and some medically plausible interactions were also examined. 
Variables and their interactions were retained in the model if they significantly improved 
the model fit using the likelihood ratio test. 

 Results and discussion 

Here we would like to show results of multivariate modelling. Other details can be read in 
the published paper [7]. 

In univariate models, possible risk factors were examined separately; variables and the 
univariate results are shown in Table 5. These variables were highly correlated. To avoid 
multicollinearity in multivariate modelling, the correlation structure was examined by 
factor analysis, which resulted in four factors. Instead of producing new artificial variables 
by factor analysis, we collapsed original variables belonging to the factors using the „or” 
logical operator. In multivariate models, age, gender, hayfever, airway management (TT, 
LMA or face mask) and the new collapsed variables (airway sensitivity, eczema, family 
history and anaesthesia) were examined. As a result of multivariate analyses (Table 5), 
some variables were not significant. The interactions with age and the following, medically 
plausible interactions were also not significant: airway sensitivity by anaesthesia and 
airway sensitivity by airway management (TT, LMA or face mask).  

Table 5. Relative risk and 95% confidence interval (CI) for the risk factors of the occurrence for perioperative 
bronchospasm.  

Variable Univariate    Multivariate   
 p RR 95%CI  p RR 95%CI 
Age 0.325 0.985 0.956 1.015   -   -   -   -  
Gender 0.004 0.667 0.505 0.882      
Hayfever < 0.0001 2.915 2.153 3.947      
            
Upper respiratory tract infection 
(URI) <2 weeks <0.0001 2.146 1.498 3.075      
Wheezing at exercise <0.0001 7.730 5.870 10.178      
Wheezing >3 times in the last 12 
months <0.0001 7.168 5.307 9.680      
Nocturnal dry cough <0.0001 10.510 7.932 13.927      
Airway sensitivity <0.0001 8.463 6.179 11.590   < 0.0001 5.653 4.089 7.816 
          
Eczema in the last 12 months <0.0001 3.158 2.359 4.227      
Ever eczema <0.0001 4.575 3.444 6.077      
Eczema <0.0001 4.533 3.416 6.016   <0.0001 2.601 1.950 3.470 
          
Asthma in the family, >2 persons <0.0001 4.415 3.082 6.325      
Hayfever in the family, >2 persons <0.0001 3.753 2.426 5.808      
Eczema in the family, >2 persons 0.028 2.190 1.089 4.401      
Smoking in the family, Mother and 
Father <0.0001 2.603 1.894 3.576      
Family history <0.0001 2.932 2.212 3.887   <0.0001 1.863 1.413 2.458 
          
Airway managed by registrar vs. 
pediatric anesthesia consultant <0.0001 3.847 2.473 5.984      
Inhalational induction of anesthesia <0.0001 2.381 1.791 3.167      
Change of anesthesiologist during 
airway management <0.0001 4.094 2.646 6.335      
Anesthesia <0.0001 3.872 2.163 6.929   <0.0001 3.078 1.727 5.484 
          
ENT surgery 0.043 1.458 1.012 2.101   -   -   -   -  
Face mask vs. laryngeal mask (LMA) 0.118 1.933 0.846 4.418  0.304 1.538 0.677 3.493 
Face mask vs. tracheal tube (TT) <0.0001 5.105 2.252 11.574  0.002 3.523 1.564 7.937 
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 Interpretation 

This study identified from the child’s/family medical history risk factors increasing the risk 
for PRAE. These children can be systematically identified at the preanaesthetic assessment 
and thus benefit from a specifically targeted anaesthesia management. 

4. Conclusion 
In this paper, we gave an introduction by examples to the theory, special properties, as well 
as some qualitative methods for generalized linear models. Our examples illustrated that 
the advanced techniques of biostatistics can help in developing the theory of medicine and 
might have an impact to the practice of curing. 
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