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Let  a  motion  be  described  by a  differential  equation,  but  when  some conditions  hold  an  instantaneous  effects

change  the  position  and/or  velocity  of  the  moving  body.  Such  systems  are  called  impulsive.  They  are

mathematical  models  of  several  phenomena  in  all  fields  of  science.  Since  their  theoretical  study  is  quite

complicated  (combination  of  differential  or  difference  equations),  computer-aided  methods  are  particularly

important in both theoretical studies and applications. The author developed packages in Mathematica to solve

and  visualize different  types  of  impulsive systems. In  this  paper,  we give several  examples  to  demonstrate the

most important properties of impulsive systems and the main features of the developments in Mathematica. See

the web-page http://www.model.u-szeged.hu/index.php?action=edoc  for  [13]  to find  details.  The package is  an

attachment of this paper. 

1. Introduction
In everyday life, it happens very often that under some conditions, an effect causes changes under very short time
or  either  instantaneously.  In  this  case,  we  speak  about  impulses.  Continuous  and  impulsive  effects  can appear
together,  they  are  called  impulsive  systems.  For  example,  we  can  meet  such  systems  at  discrete  or  piecewise
control,  repeated  drug  administration,  harvesting,  pulse  acceleration  (control)  of  missiles,  etc.  Some examples
can be found in our references. Due to the complicated mathematical description, the experimental study is useful
and informative, and sometimes it is the only way to investigate the properties of such phenomena.

In  order  to  help  mathematical  research  and  applications  in  sciences,  the  author  developed  tools  [13,14]  in
Mathematica to visualize and solve different types of impulsive systems. Note that the novelty of the mathemati-
cal  theory  and  the  arising  technical  difficulties  causes  that  such  packages  are  not  developed  yet  in  any  other
mathematical systems. The package has been continuously updated, and now essentially improved in Mathemat-
ica 8. Some special features are: numerical solution of impulsive systems; visualization of impulse fields; plotting
the jump surfaces; functions for phase mappings.

This paper is based on  [13] and [14]. Here we apply our developments to study some problems of various fields,
as well as to introduce the reader to the theory, and some qualitative methods. 

First, let us consider impulsive systems with fixed impulse instants. Then, we deal with general systems in which
both  the  impulse  instants  and  the  impulses  depend  on  the  state  variables.  As  special  cases,  we  consider
autonomous systems.  Note  that the  complete Mathematica code is  attached to the  paper,  or  the current  version
can  be  downloaded  from  te  given  webpage.  To  run  the statements  loading  the  packages  is  assumed  (see  the
Appendix for the summary). 

 



2. Systems with fixed instants of impulses

Theory [13]

Let  the  infinite  sequence  8ti<  be  monotone  increasing  and  unbounded.  Let  the  function  f : �µ�n Ø�n  be
continuous, except at t = ti  Hi = 1, 2, ...L where it is continuous from left, and it can have discontinuity of the first
kind. In addition, let the functions I i : �n Ø�n be continuous. Then, the system 

(1)x ' = f Ht, xL, if t π ti,
xHti + 0L = IiHxHti - 0LL, Hi = 1, 2, 3, ...L

is an impulsive system (IDE) with impulses at fixed instants. Sometimes, it is comfortable to denote the impulses
by I Hti, xL (I : 8ti<µ�n Ø�n). 
Consider now an initial value

(2)xHt0 + 0L = x0.

The  solution  xHt; t0 + 0, x0L  of  the  initial  value  problem  (i.v.p.)  (1)-(2)  can  be  obtained  as  follows.  Assuming
tk § t0 < tk+1, take the maximal solution xHtL of the initial-value-problem 

(3)x ' = f Ht, xL, 
xHt0 + 0L = x0

defined  on  the  interval  @t0, TL.  If  T § tk+1,  then  the  problem  is  solved,  if  T > tk+1,  consider  the  solution  on
@t0, tk+1D, and continue it by the solution of the i.v.p.

(4)
x ' = f Ht, xL,

xHtk+1 + 0L = Ik+1HxHtk+1 - 0LL.

Through the paper  we assume that the solutions of the above ininitial value problems are unique. We can see that
both ordinary differential equations and difference equations are special cases of such systems by taking IkHxL = x

and  f Ht, xL = 0,  respectively.  Hence,  the  properties  of   continuous  and  discrete  effects  can  appear  together.  In
addition, the impulse instants are not necessarily uniformly distributed, and it results in rather unusual properties.
For theoretical details, see [2,3,13,19].

We  emphasize  that  the  initial  condition  is  always  xHt0 + 0L = x0  (right-hand-side  limit)  and  the  solution  begins
with the solution of the ODE part. It is obvious that the local existence and local continuability is determined by
the  ODE  part.  If  the  solutions  of  the  ODE  are  continuable  to  infinity,  then  the  solutions  of  the  IDE  can  be
continued to infinity providing that the sequence 8tk< has no finite accumulation point.

A  new phenomenon appears  if  an impulse  function IkHxL  is  not  one-to-one.  The backward  continuability is  not
unique, since there exists at least two different solutions becoming identical on @tk, ¶L.
The  equilibria  of  (1)  are  the  constant  solutions,  i.e.,  the  solutions  of  the  system
f Ht, xL = 0, IkHxL = x Hk = 1, 2, ...L .
In order to help the experimental study of system (1), we need to work with the continuous and discrete effects,
and hence we need the following tools:

– Describe the IDE.

– Vector fields to show the directions of solutions of the ODE part.

– Impulse fields to show the jumps by the impulses.

– Solve the initial value problems of the IDE.

– Visualize the solutions, trajectories.

As  known  for  ODE's,  the  direction  field  81, f Ht, xL<  gives  the  tangent  vectors  of  the  integral  curves  in  the
extended  phase  space  RµRn.  We  can  also  introduce  the  impulse  field  80, I Hti, xL - x<  in  RµRn  that  gives  the
jumps  by  the  impulses.  We  emphasize  that  both  the  direction  and  the  length  of  the  vectors  are  essential.  If
f Ht, xL = f HxL (the ODE is autonomous), the tangent vectors of the trajectories of the ODE part are given by the
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vector field f HxL  in the phase space Rn. Analogously, if Ik+1HxL = I HxL, then the impulse vectors I HxL - x can also
be  shown  in  the  phase  space.  Note  that  although  the impulse  is  independent  of  the  time,  the  system  is  not
autonomous, since the behavior depends on the instants ti.

Next,  we  consider  the  simple  example  of  an  impulsively  perturbed  harmonic  oscillator  to  present  the  tools
developed, as well as we consider the experimental aid of some qualitative methods for impulsive systems with
fixed impulse instants.

A damped harmonic oscillator under impulse effect

 Consider the harmonic oscillator, and let the speed be impulsively modified periodically. We obtain the follow-
ing system 

(5)
x ' = y, y ' = -x, if t π ti,

  

xHti + 0L = xHti - 0L, yHti + 0L = Ii HyHti - 0LL,

where ti = i T . The case of continuous damping effect would be x' = y, y ' = -x- a y. Now, let the oscillator be
damped impulsively in the form 

yHti + 0L = bi yHti - 0L
where  0§ bi § 1.  If  bi = 0,  then  the  speed  becomes  zero  (resulting  nonuniquiness  problems  of  the  i.v.p,  that
cannot  happen for  ODE'S),  and  no impulse  works  if  bi = 1.  Note  that  the  oscillating body is  "kicked"  back by
bi < 0, and for bi > 1 the speed is impulsively increased. The detailed theoretical study can be found in [5-12].
Now, consider the damping case step by step.

  The system

The right-hand-side of the ODE is written as the vector fields require.

var = 8x, y <;

rhs = K 0 1

−1 0
O.var;

The behavior of the harmonic oscillatior is know, so we do not consider it separately. 

Let T = 1 and tn be the sequence of impulse instants. The impulses are given as follows:

T = 1.; b = 0.7;

tn = Table @n T, 8n, 1, 100 <D;

FixedImpulse @n_, tn_List, u_List D : = 8uP1T, b ∗ uP2T<;

Here u is the phase variable. This parameter structure is assumed by every commands. The window parameters

are

t0 = 0; t1 = 6;

x1 = y1 = −1.; x2 = y2 = 1.;

Before doing anything, load the needed packages.

Needs@"VectorFieldPlots`" D;

SetDirectory @"FileName" ê.NotebookInformation @EvaluationNotebook @DD ê.

FrontEnd`FileName @d_List, nam_, ___ D � ToFileName @dDD;

<< package//impulseplot.m

<< package//idesolve.m
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<< package//phase2d.m

  Vector fields

Since the right-hand-sides are time-independent,  we can plot  both the vector  field of  the ODE and the impulse
field in the 8x, y< phase plane. 

Fields2D = DoubleFieldPlot @8rhs, FixedImpulse @1, tn, var D − var <,

8x, x1, x2 <, 8y, y1, y2 <, Axes → True, PlotPoints → 7D
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The black arrows belong to the vector field of ODE, the colored ones show the impulses at points 8ti, x, y<, where
ti e tn.  The behavior  of  the  trajectories cannot be conjectured by this figure,  since  the impulse instants  are not
shown here. To have more information, we need the fields in the extended phase space. 

dx = dy = 0.4;

FieldODE3D = VectorFieldPlot3D @Flatten @81, rhs <D, 8t, t0, t1, T ê 2<,

8x, x1, x2, dx <, 8y, y1, y2, dy <, Axes −> True, VectorHeads −> True D
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FieldIMP3D = FixedImpulseFieldPlot3D @FixedImpulse, tn, 8t, t0, t1 <,

8x, x1, x2, dx <, 8y, y1, y2, dy <, ColorFunction −> HHue@�1D &LD
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The impulse vectors are plotted at the elements of tn between t0 and t1. The meaning of the parameters of the

statement FixedImpulseFieldPlot3D is obvious. Note that functions for scalar systems are also available

(FixedImpulseFieldPlot, AnimateImpulse, StackImpulse ).

Fields3D = Show@FieldODE3D, FieldIMP3D D
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  Solving the system

Now, let us solve the system. The initial time is t0, and the solutions start from the unit circle of the phase space.

The solver command is IDESolve, that creates InterpolatingFunction objects. It solves the system intervalwise

on the intervalsHti, ti+1D  using NDSolve,  and the obtained InterpolatingFunction  objects are joined at

each step. This function requires only the right-hand-side of the system (as the vector field plots), and can find
the solutions for several initial values. The result is a list of parametric curves.

IC = Table B N@8Cos@uD, Sin @uD<D, :u, 0, 2 π,
π

8
>F;

Traj @t_ D = IDESolve @rhs, var, tn, FixedImpulse, IC, 8t, t0, t1 <D;

  Visualizing the solutions

Basic visualizations of the solutions can be done by combinations of Plot, ParametricPlot and ParametricPlot3D
commands. The coordinates are well visible by using the following statement:
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Map@Plot @�, 8t, t0, t1 <, PlotRange −> 8−1, 1 <, ImageSize → 8250, 180 <D &,

Traj @t DD êê ListAnimate

1 2 3 4 5 6
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Obviously, the continuous curve is xHtL, the discontinuous is yHtL = x' HtL. Let us plot the trajectories together with
the fields:

PlotTraj = ParametricPlot @Traj @t D, 8t, t0, t1 <D;

Show@Fields2D, PlotTraj D
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Let us consider the integral curves and the vector fields in 3D:
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PlotTraj3D = ParametricPlot3D @Map@Prepend @�, t D &, Traj @t DD,

8t, t0, t1 <, PlotStyle → 8Thickness @0.005 D<, ImageSize → 8250, 200 <D;

Show@Fields3D, PlotTraj3D D
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We can observe immediately that if yHtiL = 0, the damping is ineffective. It is an important fact in the research on
asymptotic  stability  properties  of  this  system  (see [10,12]).  In  the  special  case  T = p, ti = i p,  there  exists  a
solution not tending to zero, if T < p, the zero solution is attractive [6].

 Asymptotic behavior, the method of auxiliary functions

Since the most of  the systems are theoretically unsolvable,  qualitative methods are of  importance to investigate
the  properties  of  the  solutions  without  explicitly  knowing them.  The method  of  auxiliary functions,  the  second
method of  Liapunov, is  one of  the  most effective  qualitative methods in studying asymptotic  behavior  (see,  for
example, [2], [13], [18] and [19]). The basis of the method is very simple. Here, we only show the general idea
on our example, how the method can be aided by Mathematica for impulsive systems. 

The total energy of the system (5) is

V@8x_, y_ <D : =
1

2
8x, y <. 8x, y <

The graph of V can be plotted:

Plot3D @V@var D, 8x, x1, x2 <, 8y, y1, y2 <,

BoxRatios → Automatic, MeshFunctions → 8�3 &<D

Since the energy function is positive definite, the contour lines in the phase space R2 are closed around the origin
(circles), and cylinders around the axis t in the extended phase space. 

level = 80.1, 0.3, 0.5 <;
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ContourV = ContourPlot @V@var D, 8x, x1, x2 <, 8y, y1, y2 <,

Contours → level, ContourShading → False D

ContourV3D =

ContourPlot3D @V@8x, y <D, 8t, t0, t1 <, 8x, x1, x2 <, 8y, y1, y2 <, Contours → level,

ContourStyle −> 8Opacity @0.2 D<,

MeshStyle −> 8Opacity @0.5 D<,

MeshShading −> 8Automatic <,

MeshFunctions −> 8�1 &<, Mesh → 8Take@tn, 5 D<,

AxesLabel −> 8t, x, y <, BoxRatios → Automatic D

We investigate how VHx, yL changes along the solutions, i.e., we study VHxHtL, yHtLL. For example, if VHxHtL, yHtLL
is  decreasing,  the  trajectories  cross  the  contour  lines  from  outside  to  inside.  If  it  is  the  case  for  every  small
enough contour lines, the zero solution is stable. For the details of the stability properties and theorems, see, for
example  [2,13,18,19].  The  main  point  of  the  method  is  that  the  change  of  the  function  VHxHtL, yHtLL  can  be
followed by the  derivative  along the  solutions and by the  jumps at  the  impulses without  knowing the  solutions
themselves.

As  it  is  well  known  in  the  qualitative  theory  of  differential  equations,  for  t ∫ ti Hi = 1, 2, ...L , VHxHtL, yHtLL  is
differentiable fort ∫ ti Hi = 1, 2, ...L and 

d

d t
VHxHtL, yHtLL = gradV Hx, yL . 8x', y'< = 8x, y< . 8y, -x< = 0,

i.e., the scalar product of gradV  (normal vector of the contour lines of V) and the tangent vector of the trajecto-
ries is zero, since the harmonic oscillator preserves energy. 
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dV = D@V@var D, 8var <D.rhs

0

On the other hand, at the instants ti Hi = 1, 2, ...L, the change of the energy is discrete, so we have to calculate the
jump of the energy:

 VHxHti + 0L, yHti + 0LL - VHxHti - 0L, yHti - 0LL.
 In our example, we have:

Simplify @V@FixedImpulse @1, tn, var DD − V@var DD
−0.255 y2

which shows that the impulses decrease the energy whenever yHti - 0L ∫ 0 . The theoretical study would lead very
far, so we consider only the visualization tools in Mathematica. Observe that in our case both the continuous and
impulsive effects change the energy in the same direction. The behavior is more complicated if they work against
each other. This will be the case in section 6, where we study the physical pendulum with external forces.

Let us show the functions VHxHti + 0L, yHti + 0LL , VHxHti - 0L, yHti - 0LL  as well their difference at t1, colored by
red, blue and green, respectively. In this special example, the impulses are independent of  i.

Plot3D @8V@8x, y <D, V @FixedImpulse @1, tn, 8x, y <DD,

V@FixedImpulse @1, tn, var DD − V@var D<, 8x, x1, x2 <, 8y, y1, y2 <,

BoxRatios → Automatic, PlotStyle →

88Blue, Opacity @0.3 D<, 8Red, Opacity @0.5 D<, 8Green, Opacity @0.5 D<<,

RegionFunction → HH�2 > �1L &L, AxesLabel → 8x, y, V <D

This figure agrees with the relation between the trajectories and contour lines. To really visualize the method, we
can show the contour lines of the energy function and the vector fields. 
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Show@Fields2D, ContourV D

Note that these plots can be also applied to localize experimentally the trajectories in other cases, for example to
find limit cycles. If the solutions are known, we can obtain more attractive figures. To plot the energy along the
solutions is very simple. 

Plot @Map@V@�D &, Traj @t DD, 8t, t0, t1 <D
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The contour lines of the energy function and trajectories are

Show@PlotTraj, ContourV D

Finally, consider the behavior of the solutions in the extended phase space.
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Show@ContourV3D, PlotTraj3D, PlotRange → All, BoxRatios → Automatic D

The figures help to lead to the conjecture that every solution tends to zero as  t Ø¶. This is really true as proved
in [5]. The proof for this simple example is not too difficult, but we have to note that the problem in general is far
from trivial. We recommend to use our programmes  above to investigate the following systems:

ì  Continuously damped oscillator

Either for the damped equation

(6)x '' + aHtL x ' + x = 0, aHtL ≥ 0,

or for the analogous impulsive system (5) with 0§ bi § 1, there is no necessary and sufficient condition proved
yet for the asymptotic stability of the zero solution. 

ì  Oscillators with nonlinear elastic force

The problem is  even more  complicated for  nonlinear  oscillators.  In  particular,  we recommend the  reader to do
experiments for the system

(7)
x '' +§ x †asignHxL = 0,  a > 0, a π 1,

x ' Hn T + 0L = bi x ' Hn T - 0L, T > 0, bi e R.

It can be proved that this system has infinitely many periodic solutions [11], what is not true for the linear case. 

ì  Oscillators with nonlinear damping

If the impulse is nonlinear, such as

(8)x ' H ti + 0L =§ x ' Hti - 0L †b signHx ' H ti - 0LL,

we can obtain relaxation oscillations [13] an analog of the Rayleigh equation. The qualitative properties of such
impulses are  not  investigated yet.  For  illustrations,  let  us  consider  the  trajectories  of  this  system with  different
settings:

– b = 0.4; ti = 0.2i
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– b = 0.4 andti = i0.6
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t
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–  b = 0.4; ti = HiL0.5
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3. Systems with general impulses

Theory [13]

Now, consider general impulses, which appear when the integral curve of solutions of the system

x' = f Ht, xL, H f : �µ �n Ø�nL.
meet  hypersurfaces  in  the  extended  phase  space.  More  precisely,  let  the  scalar  fields  S1, S2, ..., Si, ... :
�µ �n Ø� be continuous, and the functions (impulses) I1, I2, ..., I i , ... : �µ�n Ø�n be given. The equations
SiHt, xL = 0  define  surfaces  in  �µ �n.  Let  us  assume  that  if  SiHt, xL = SjHt, xL = 0  Hi, j = 1, 2, ...L,  then

I iHt, xL = I jHt, xL,  i.e.,  the  impulse  system  must  be  well-defined.  Consider  a  solution  xHtL  of  the  ODE.  If

SiHt, xHtLL = 0 at  a  moment  t,  then  let  us  continue  xHtL  with  the  solution  of  the  ODE  with  the  initial  value
I iHt, xHtLL,  i.e.,  xHt + 0L = I iHt, xHt - 0LL.  By  this  method  we  defined  a  general  impulsive  system  with  state-
dependent impulses:

(9)
x ' = f Ht, xL,  if  SiHt, xH tLL π 0;

   

 xHt + 0L = IiHt, xHt - 0LL, if SiHt, xH tLL = 0, Hi = 1, 2, 3, ...L.

Assume that f  is continuous if SiHt, xL ∫ 0, and it has discontinuity of first kind if  SiHt, xL = 0 Hi = 1, 2, 3, ...L,
there  exist  the  "half-sided"  limits  limsØt,uØx,SiHs,uL<0 f Hs, uL  and  limsØt,uØx,SiHs,uL>0 f Hs, uL.  The  solutions  are  left-

continuous, piecewise differentiable functions, having discontinuities of first kind at the instants of impulses.

It  is  obvious  that  the  systems  with  fixed  instants  of  impulses  can  be  obtained  by  giving  SiHt, xL = t - ti.  If
SiHt, xL = SiHxL Hi = 1, 2, ...L, then we obtain autonomous impulses. For this caase we will consider an example in
section 4. 

Note  that  a  function  Si  can  define  infinitely  many  instants.  For  example,  ti = i T  can  be  given  by  sinI p t

T
M = 0.

Hence, SiHt, xL = 0 can mean several, even infinitely many surfaces. The impulses I iHt, xL  Hi = 1, 2, ...L  can also
be expressed together. Hence, the system (9) can be written in the form

(10)
x ' = f Ht, xL,  if SHt, xHtLL π 0,

   

 xHt + 0L = IHt, xHt - 0LL, if SHt, xH tLL = 0.

For technical reason, we keep the original form (9) .

Equilibria  on @t0, TL  are  the constant  solutions.  A point  x
-
œ �n  is  an equilibrium if  and only if  f It, x

-M ª 0 and

IkIt, x
-M = x

-
 for every k, provided SkIt, x

-M = 0 and t, t œ @t0, TL. 
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Properties of  the surfaces SkHt, xL = 0 are  of  importance.  For example,  if  SkHt, xL = 0 is invariant  for  the  ODE,
the integral curves can remain on it, and hence the next impulse instant cannot be determined.

In  addition,  continuability  of  the  solutions  essentially  depends  on  the  impulses  and  the  shape  of  the  surfaces
SkHt, xL = 0. A solution can meet the surface SkHt, xL = 0 several times, such that the solution is beaten back from
the  surface.  This  is  the  case  if  SkHt, xHtLL = 0,  SkHt, xHtLL < 0 H > 0L  for  t < t  and  also
SkHt, I iHt, xHt - 0LLL < 0 H > 0L.  Graphically,  the  solution  cannot  go  to  the  other  side  of  the  surface.  This  phe-
nomenon cannot happen for impulses at fixed instants. 

We can study system (9)  in Mathematica similarly to systems with fixed impulse instants,  but  the implementa-
tions of the commands are completely different:

– Describe the ODE as before.

– For  impulses,  needed  to  give  the  scalar  fields  SkHt, xL  (�µ�n Ø�)  and  the  impulse  mappings  I iHt, xL
(�µ�n Ø�n).

– Visualize the Impulse (jump) mappings, i.e., the image of the surfaces SkHt, xL = 0 by the impulse I iHt, xL. 
– Solve the initial value problems of the IDE.

– Visualize the solutions, trajectories.

Now, we will illustrate the main features, and consider an example with strange behavior. 

A strange scalar system

Consider the following system [2]

(11)

x ' = 0, for S Ht, xHt - 0LL π 0,

xHt + 0L = xHt - 0L2 signHxHt - 0LL, for S Ht, xHt - 0LL = 0,

where SHt, xL = sinHpHt - xLL, if x < 2. This system can be also written in the form

x' = 0,  for  t ∫ tiHxL,   
xHt + 0L = xHt - 0L2 signHxHt - 0LL, if t = tiHxL Hi = 1, 2, 3, ...L,

where tiHxL = x + 6 i, if x < 2. 

Let us define the system in Mathematica. The variables, the right-hand-side and the initial conditions are given as
before.

First, load the needed packages.

SetDirectory @"FileName" ê.NotebookInformation @EvaluationNotebook @DD ê.

FrontEnd`FileName @d_List, nam_, ___ D � ToFileName @dDD;

<< package//impulseplot.m

<< package//iderksolve.m

var = 8x<; rhs = 80<; t0 = 0; t1 = 8; dt = 0.01; x1 = −2.5; x2 = 2.5;

IC = 88−2<, 8−1<, 8−1.1 <, 8−0.9 <, 81<, 80.9 <, 81.1 <, 82. <<;

Impulses  are  given  in  a  finite  list  9Si, I i , di=,  i.e.,  99S1, I1, d1=, 9S2, I2, d2=, ...=,  where  di e 80, 1<  is  a  technical

parameter,  needed for  the  solver  routine.  There  is  a   technical  restriction: the  impulse  functions must  be  given
coordinatewise in lists.

S@t_, x_ D : = Which BAbs@xD < 2, Sin B 1

2
π Ht − xLF, True, 1 F;

Impulse = 99S@t, x D, 9x2 Sign @xD=, 0 ==;
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We can visualize the impulse effect with JumpPlot on the "surface" SHt, xL = 0, i.e., the points 8t, x< satisfying

SHt, xL = 0, and the image 8t, I Ht, xL<  together.  Obviously, x= 1 is a fixed point,  we will  find beating effects for
x e H-1, 0L and x e H1, 2L. The third element (important later in the solving process) in the impulse list is now used
to  color  the  contour  lines  (black  and  blue  for  d = 0 and  d = 1,  respectively).  For  2D  systems,  the  analogous
JumpPlot3D statement can be applied. 

JumpPlot @Impulse @@1DD, 8t, t0, t1 <, 8x, x1, x2 <, AspectRatio → Automatic D
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Now, solve  the system using the  IDERKSolve  statement.  The solver  algorithm and some technical issues are

descibed below:

The meaning and structure of the parameters will be obvious below. In solving the system to find the next instant
when the impulses occur, we have to solve the equation Si Ht, x HtLL = 0 while xHtL is being solved simulta-

neously. Hence, this equality should be verified in the solving process of the ODE part. It can be done by EventLo-
cator in NDSOLVE. Instead, to solve the ODE between two impulses, we use a Runge-Kutta method with fixed
step size (the implementation by R. Maeder [16]), and instead of solving Si Hτl, x HτlLL = 0,  we verify the

change of sign of the functions Si Ht, x HtLL stepwise. Note that wrong impulses can appear if the functions

Si are not continuous!

Let the last step be t = sl . The solution is of the form 88s0, x0<, 8s1, x1<, ..., 8sl , xl<, 8sl+1, xl+1<<. If  every product
SiHsl , xlLSiHsl+1, xl+1L  is positive, we continue the solution of the ODE from 8sl+1, xl+1< and find 8sl+2, xl+2<. If for
one SiHt, xHtLL we obtain SiHsl , xlLSiHsl+1, xl+1L § 0, then SiHtl , xHtl LL = 0 for some tl e@sl , sl+1D, and the correspond-
ing impulse I iHtl , xHtl LL should be applied. We do not use finer approximation, only apply I iHsl , xlL or I iHsl+1, xl+1L
depending di = 0 or di = 1 in the description of the impulse, and the solution of the ODE will be continued from
the  list  88s0, x0<, 8s1, x1<, ..., 8sl , xl <, 8sl , I Hsl , xl L<<  or  88s0, x0<, 8s1, x1<, ..., 8sl , xl <, 8sl+1, I Hsl+1, xl+1L<<,  respec-
tively.  Different settings can result  in different solutions.  In the case di = 0 (impulse at sl )  the solver  can cause
wrong beating. For di = 1, the solver can avoid real beating, since the solution can continue on the "other side" of
the  surface SiHt, xL = 0.  Note  that  if  the  functions  SiHt, xL =SiHtL,  i.e.,  the  case  of  fixed  instants  of  impulses,  the
setting must be di = 1! 

The  result  is  a  list  {sol1,...,solM},  where  soli  is  the  solution  belonging  to  the  ith  initial  value.  The

structure  of  each  solution  is  {8t0, x1Ht0L, ..., xnHt0L<,

..., 8ti, x1HtiL, ..., xnHtiL< ...}. 

Now,  turn  back to  our  example,  and  solve  the  system with  d = 0  (the  system will  have  beating effect,  and  we
must not ignore it).

sol = IDERKSolve @rhs, Impulse, var, IC, 8t, t0, t1, dt <D
An  underflow  can  occur  for  the  solution  with  xH0L = -0.9  because  of  its  unusual  behavior  (see  the  figure and
explanations below). 
Plot the solutions and the set SHt, xL = 0 together:

plt1 = ListPlot @sol, Joined → True, PlotStyle → 8Thickness @0.01 D<D;

plt2 = ContourPlot @S@t, x D, 8t, t0, t1 <, 8x, x1, x2 <,

D

14 J. Karsai



Contours → 80<, PlotPoints → 100, ContourShading → False D;

Show@plt1, plt2, PlotRange → All D

We can see that the behavior of the solutions mainly depend on the initial values. In particular, it can be proved
that:

– If x0 ¥ 2, there is no impulse effect on the solution.

– If 1< x0 < 2, then there are finite impulses on the same "surface" (beating effect).

– If -2§ x0 < -1, then there are finite impulses at different "surfaces". 

– The points x0 = ≤1 and x0 = 0 are fixed points. 

– If  0< x0 < 1, then there are infinitely many impulses at different "surfaces" at  the instants ti,  limiØ¶ti =¶,
and limiØ¶ xHti ≤ 0L = 0.

– If  -1< x0 < 0, then there are infinitely many impulses at the same "surface" at  the instants ti ,  limiØ¶ti = 2,
and limiØ¶ xHti ≤ 0L = 0. For t > 2, the solution is identically zero.

 Some notes

It can happen that IDERKSolve does not detect Si Ht, x HtLL = 0, if the solution only touches and does not cross

this surface. 

The program applies the first  impulse in the list  Impulse,  for  which the inequality Si Hsl , xl LSi Hsl+1, xl+1L § 0

holds. Although the surfaces Si Ht, x HtLL = 0 are assumed disjoint Hi, 1, 2, ...L, they can be close to each other. If
the step size dt  is not small enough, the condition Si Hsl , xlLSi Hsl+1, xl+1L § 0 can hold for several functions Si ,

and hence the solver may not choose the real surface. If it seems to happen, use smaller step size and zooming-in
technique for better approximation.

4. Example: swinging
Every parent knows how to give children a swing. The models of swinging are simply variations of the damped
nonlinear pendulum with an external force. It can be described by the system

(12)x ' = y, y ' = -a y - sinHxL Ha > 0L.

This  equation  and  the  following  figures  are  well  known,  but  let  us  see  the  vector  field  and  the  trajectories  as
strarting points before the other cases. 

<< package//odesolve.m

a = 0.2;

var = 8x, y <;

swing : = 8y, −a y − Sin @xD<;

x1 = −π; x2 = 3 π; y1 = −3; y2 = 3;

t0 = 0; t1 = 20.;
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The total energy of this system is

V@8x_, y_ <D =
y2

2
+ ‡

0

x

Sin @uD �u;

ContourSwingV =

ContourPlot @V@var D, 8x, x1, x2 <, 8y, y1, y2 <, ContourShading → False D;

SwingField = VectorFieldPlot @swing, 8x, x1, x2 <,

8y, y1, y2 <, Axes → True, ScaleFactor → 1D;

Show@ContourSwingV, SwingField, AspectRatio → Automatic D;

Now, ODESolve is a user-friendly form for NDSolve:

IC = Table @ N@80., u <D, 8u, 1.4, 3, 0.2 <D;

PendulumTraj @t_ D = ODESolve@swing, var, IC, 8t, t0, t1 <D;

  Consider the trajectories:

PendPlot = ParametricPlot @PendulumTraj @t D,

8t, t0, t1 <, PlotRange → All, ColorFunction → HHue@�3D &LD;

Show@SwingField, PendPlot, ContourSwingV D

What is important in the point of view of giving a swing in the next sections is that the pendulum can turn over
the upper equilibrium, if the speed is too high. Hence too good swings with small friction or air-drag are danger-
ous. 

The  external  force  (giving  a  swing  by  parents)  can  depend  on  the  time,  the  position  and  the  velocity  of  the
pendulum either  continuously  or  using  impulses.  Note  that  kids  can  swing  by  themselves  without  an  external
hand,  as  they change the  length of  the  pendulum by moving periodically their  legs (see  [4]  and the  references
therein). 

Let us consider different cases of the parents' techniques: different external  forces and different strategies to to
choose the "best" time for the force. The reader, later, can combine and investigate them to find a really good one.

Continuous, periodic external force

A simple periodic external force can be cosHtL, and the model is 

(13)x ' = y, y ' = -a y - sinHxL+ cosHtL Ha > 0L.

Although  this  model  is  very  simple,  mathematically  it  is  very  interesting.  It  was  proved  only  in  2007  by  T.
Csendes,  B.  Bánhelyi,  and  L.  Hatvani  [4]  that  this  equation  with  a= 0.1  can  produce  chaos.  We  can  obtain
similar  behavior,  if  the external  force  is a sign-keeping periodic  function with  period long enough (longer then
the  oscillation  time  of  the  solutions).  We  let  the  reader  study the  cases  with  short  period.  Remember  that  the
oscillation time depends on total energy. Here, let the forced system be
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(14)x ' = y, y ' = -a y - sinHxL + 0.5Icos t

2
M2 Ha > 0L.

force = :0, 0.5 Cos B t

2
F2>;

For  small  initial  speed,  the  motion  is  asymtotically  periodic.  To  see  this,  let  us  solve  the  system,  and  plot  the
solutions.

t0 = 0; t1 = 50.;

IC = Table @ N@80., u <D, 8u, 0.3, 0.8, 0.1 <D;

PendulumTraj @t_ D = ODESolve@swing + force, var, IC, 8t, t0, t1 <D;

Plot @PendulumTraj @t D@@All, 1 DD, 8t, t0, t1 <, PlotRange → All D
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If the parent has too much energy and give a large initial speed, the motion can become rather unpredictable:
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Periodic impulsive swinging

Now, let the external force be impulsive. Then the pendulum is swinging by equation (12), and at certain instants,
an  impulsive  effect  increase  the  speed  to  compensate  the  damping.  One  possibility  is  a  periodically  given
constant impulse that turns the swing toward the lower equilibrium:

(15)

x ' = y, y ' = -a y - sinHxL, a > 0, if t π k T,
  

xHk T + 0L = xHk T - 0L,
 

 yHk T + 0L = yHk T - 0L - Ak signHxHk T - 0LL, Ak > 0.

A "sophisticated" impulse should also take into account the value of the speed.

Based  on the  example  in  section  2,  system (15)  can  be  easily investigated  in  Mathematica.  For  the  qualitative
properties  several  questions  may  arise.  What  properties  on  a, T  and  8bk<  can  guarantee  a  stable  nontrivial
periodic swinging? What impulses can result chaos in this system? We lead to (try to) answer these questions to
the reader, and we will do only some basic investigations.

T = 1.; A = 0.6;

tn : = Table @n T, 8n, 1, 100 <D;

SwingImpulse @n_, tn_List, u_List D : = 8uP1T, u P2T − A Sign @uP1T D<;

x1 = −π; x2 = π; y1 = −2; y2 = 2;
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t0 = 0; t1 = 40.;

The vector fields show the direction of the motion in the phase space:

Fields2D = DoubleFieldPlot @8swing, SwingImpulse @1, tn, var D − var <,

8x, x1, x2 <, 8y, y1, y2 <, Axes → True, PlotPoints → 7, AxesLabel → 8x, y <D
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Consider the solutions:

IC = Table @ N@80., u <D, 8u, 1, 2.4, 0.2 <D;

SwingTraj @t_ D = IDESolve @swing, var, tn, SwingImpulse, IC, 8t, t0, t1 <D;

Animate the solutions xHtL and the trajectories 8xHtL, yHtL< with respect to the initial speed:

Map@Plot @�, 8t, t0, t1 <, PlotRange −> 8−2, 2 <, ImageSize → 8250, 180 <,

AxesLabel → 8t, x <D &, SwingTraj @t D@@All, 1 DDD êê ListAnimate
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Map@ParametricPlot @�, 8t, t0, t1 <, PlotRange → 88−2, 2 <, 8−2, 2 <<,

ImageSize → 8250, 180 <, AxesLabel → 8x, y <D &, SwingTraj @t DD êê ListAnimate
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We  can  have  the  conjecture  by  our  figures  that  this method  looks  good  enough  to  provide  a  stable  swinging.
Every  solution  looks  like  tending  asymptotically  to a  periodic  motion.  But  it  depends  mainly  on  the  initial
conditions. In addition, it can be of interest to investigate the dependence on the period and value of the impulse.
It is also worth to investigate some cases of large speed.

Smart state-dependent swinging

Consider now some cases of state-dependent swinging. The parent stands on one side of the swing, hence we can
assume  that  the  impulses  are  given  for  xHtL ¥ 0.  A  rather  practised  parent  would  do  the  following:  he  or  she
pushes back the  swing if  the  velocity is  zero,  and  the  force  (impulse  on the  speed)  not  only shows toward  the

lower  equilibrium,  but  it  is  reciprocally  proportional  to xHtL,  for  not  too  big  angle  (such  as  xHtL < 4p

5
).  For

example, let the impulse be y Ht + 0L = aKx^ - MaxK ˝ xHtL ˝, x
^OOO signH-xHt - 0LL. Now, such a system (15) takes the

form:

x1 = −π; x2 = π; y1 = −2; y2 = 2;

SmartImp @x_, y_ D = :x,

Piecewise B:: 4 π

5
− Min BAbs@xD,

4 π

5.
F Sign @−xD, Abs@xD ≤

4 π

5
>, 8y, True <>F>;

SmartImpulse = 88y , SmartImp @x, y D, 1 <<;

One  can  verify  that  the  parameter  value  0  in  Impulse  would  result  in  nonrealistic  solutions.  The  system is

autonomous,  hence  we  can  plot  the  vector  field  and  the  jumps  in  the  2D phase  space.  The  vector  field  of  the
damped pendulum is well known:

Use the statement AutonomousJumpPlot2D to visualize the impulse mappings. 
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AutonomousJumpPlot2D @SmartImpulse @@1DD, 8x, x1, x2 <,

8y, −2, 2 <, PlotPoints → 30, PlotRange → All, AspectRatio → Automatic D
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Solve the system and visualize the solutions:

t0 = 0; t1 = 20; dt = 0.05; IC = 880, 1 <, 80., 0.24 <, 80, −0.2 <<;

smartswing = IDERKSolve @swing, SmartImpulse, var, IC, 8t, t0, t1, dt <D;

ListPlot @smartswing ê. 8s_ ?NumericQ, u_ ? NumericQ, v_ ?NumericQ < → 8s, u <,

PlotRange −> All, Joined → True D
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ListPlot @smartswing ê. 8s_ ?NumericQ, u_, v_ < → 8s, v <, Joined → True D
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ListPlot @smartswing ê. 8s_ ?NumericQ, u_, v_ < → 8u, v <, Joined → True D
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We can see, that the trajectories approximate a limit cycle in the phase plane. 

ì  Exercise

We recommend the reader do more experiments and conclude the precise mathematical proof.

Lazy swinging

A  lazy  parent  does  not  care  about  the  direction  of  the  motion,  he  pushes  the  swing  toward  the  equilibrium

(xHtL yHtL ¥ 0)  if  it  reaches  a  given  position  x
^
,  but  he  tries  to  be  smart  enough  to  pay attention  to  speed,  i.e.,  it

cannot be too big (to avoid the swing turning over).  The strength of the impulse be reciprocally proportional to
the angle. This is a quite, since the damping can be too large and hence the swing cannot reach again the required
position. Now, such a system can be:

x1 = −π; x2 = π; y1 = −2; y2 = 2;

LazyImp @x_, y_ D = 8x, Piecewise @88− 2 y, 0 ≤ y ≤ 2<, 8y, True <<D<;

LazyImpulse = 88x − 0.5 , LazyImp @x, y D, 0 <<;

Solve the system, and then plot the solutions and the trajectories.

t0 = 0; t1 = 20; dt = 0.01; IC = 880, 0.8 <, 80, 1 <, 80., 1.1 <<;

lazyswing = IDERKSolve @swing, LazyImpulse, var, IC, 8t, t0, t1, dt <D;

ListPlot @lazyswing ê. 8s_ ?NumericQ, u_ ? NumericQ, v_ ?NumericQ < → 8s, u <,

PlotRange −> All, AxesLabel → 8"t", "x" <, Joined → True D
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ListPlot @lazyswing ê. 8s_ ?NumericQ, u_, v_ < → 8s, v <,

PlotRange → All, AxesLabel → 8"t", "y" <, Joined → True D
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ListPlot @lazyswing ê. 8s_ ?NumericQ, u_, v_ < → 8u, v <,

Joined → True, PlotRange → All, AxesLabel → 8"x", "y" <D
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We can  see that  there  must  be  a  periodic  solution,  but  it  is  unstable.  This  "lazy"  method cannot  lead to  stable
swinging. As before, we leave this problem to the reader.

ì Exercise

We recommend the reader to find and investigate other "smart" swinging strategies.

5. The motion of a bouncing ball
Let us consider another well known phenomenon: the motion of a bouncing ball. The question is how to make the
motion of the ball periodic, and is the possible periodic motion stable?

The free bouncing

Let the ball fall  down from a given height h (some initial speed is possible).  Let xHtL denote the distance of  the
ball from the floor. The motion is described by x''= -g  where g is the gravitational acceleration.  When the ball
reaches the floor at t (xHtL = 0) a collision happens, and 

x ' Ht + 0L = -a x' Ht - 0L
where 0§ a § 1. If  a = 1, then the collision is perfectly elastic. If  a = 0, then the collision is perfectly inelastic,
thus the ball stays on the floor. Below, vHtL = x' HtL  and for the simplicity we take g= 1 and a = 0.8. The solutions
are:

Clear @αD;

var = 8x, v <; eqnparm = 8g → 1, α → 0.8 <; xvdot = 8v, −g< ê. eqnparm;

Impulse = 88x, 8x, −α v<, 0 << ê. eqnparm;

t0 = 0; t1 = 12; dt = 0.05; x0list = 881., 0 <<;

sol=IDERKSolve[xvdot,Impulse,var,x0list,{t,t0,t1,dt }];

cimke = 8"x", "x'" <;

ListSolPlot @sol, cimke, ImageSize → 8200, 100 <D@@1DD
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We can see the well known fact that the ball asymptotically tends to the floor. To try to keep the ball bouncing,
we consider two special cases: bouncing at fixed height and fixed instanst. 

Giving a beat at a given height

Let the ball move upwards  and let xHtL < h. As it reaches xHtL = h at some t, let us beat it back, i.e., 

(16)x ' Ht + 0L = - b x ' Ht - 0L,

where b > 1, as the energy must be increased. Let us do some experiments. 

 Changing the initial speed

Fix the constants a and b,  and let the ball start from the position 0< x= h0,  at different values of initial speed.
Comparing  to  the  previous  example,  we  need  only  to  modify  the  variable  Impulse.  Here  h= 1, b = 1.3,

h0 = 1.5.

var = 8x, v <;

eqnparm = 8g → 1., α → 0.8, h0 → 1.5, h −> 1., β → 1.3 <;

xvdot = 8v, −g< ê. eqnparm;

Impulse = 88x, 8x, −α v<, 0 <,

8Piecewise @88x − h, v ≥ 0<, 81, True <<D, 8x, −β v<, 0 << ê. eqnparm;

t0 = 0; t1 = 8; dt = 0.005;

 The ball is beaten back only when it is moving upwards Hv¥ 0L, hence the Piecewice function is used in the

definition of Impulse.

x0list = Table @8h0, −v0<, 8v0, 0, 3, 0.2 <D ê. eqnparm;

sol = IDERKSolve @xvdot, Impulse, var, x0list, 8t, t0, t1, dt <D;

Plot the solutions and their derivatives:

label = 8"x", "x'" <;

ListSolPlot @sol, label, ImageSize → 8200, 100 <D êê ListAnimate
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We can observe that for any (either small or  large) initial speed the ball loses energy at each collision with the
floor, hence it can reach the needed lattitude at most finite times. We encourage the reader to prove it. Hence, to
keep the ball bouncing, the lost energy must be compesated. Consider such a case in the next point.
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 Changing the beating force (by constant b)

Let  the  ball  just  fall  down (xH0L = h0, x' H0L = 0),  and  then change the  constant  b  in  formula  (16)  interactively.
Fix the constant a (depending on the properties of the floor). We need only to modify the variable Impulse in

the  previous example.  Here  h= 1,  h0 = 1.5,  a = 0.8,  and b œ @1, 2D.  Note  that  h0  must  be  big enough to give
enough energy to the ball to reach h! 

var = 8x, v <;

eqnparm = 8g → 1., α → 0.8, h0 → 1.5, h → 1<;

xvdot = 8v, −g< ê. eqnparm;

Impulse = 88x, 8x, −α v<, 0 <,

8Piecewise @88x − h, v ≥ 0<, 81, True <<D, 8x, −β v<, 0 << ê. eqnparm;

t0 = 0; t1 = 8; dt = 0.005;

x0list = 882, 0 <<;

sol = Table @
IDERKSolve @xvdot, Impulse, var, x0list, 8t, t0, t1, dt <D@@1DD, 8β, 1, 2, 0.1 <D;

Plot the solutions and their derivatives. Move the slider to see the different cases:

label = 8"x", "x'" <;

ListSolPlot @sol, label, ImageSize → 8200, 100 <D êê ListAnimate
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We can observe at small b, that the ball loses energy and can reach the needed height at most finite times. On the
other  hand,  for  big  b  the  ball  bounces  infinite  times,  the  oscillation  time  (time  elapsing  between  reaching  the
extremal positions) is smaller and smaller. So this bouncing strategy is not smart enough. A good strategy should
takte into account both the current height and velocity. Here we recommend the reader to do some exercises and
experiments.

 Beating at fixed instants

We can also try to bounce the ball by beating at fixed instants using the following rule:

x ' Hi T + 0L=-b x ' Hi T - 0L , T > 0, b ¥ 1.

Let us fix now a and b, and change the time T. The current parameters are a = 0.8, b = 1.5, h = 1, h0 = 1.5. 

 Animation: changing T

Clear @x, v, T, g, α, βD;

var = 8x, v <; eqnparm = 8g → 1., α → 0.8, h0 → 1.5, v0 → 0., β → 1.5 <;
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xdot = 8v, −g< ê. eqnparm;

Impulse = :8x, 8x, −α v<, 0 <, :Sin B π t

T
F, 8x, −β Abs@vD<, 1 >> ê. eqnparm;

t0 = 0; t1 = 10; dt = 0.005; x0list = 88h0, v0 << ê. eqnparm;

Solve the system and plot the solutions:

sol = Table @
IDERKSolve @xdot, Impulse, var, x0list, 8t, t0, t1, dt <DP1T, 8T, 0.2, 1.5, 0.1 <D;

ListSolPlot @sol, 8"x", "x'" <, PlotRange → 88t0, t1 <, 8−5, 5 <<D êê ListAnimate
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We can see that this strategy looks worse than beating at fixed height. Even more, rare (increase T) big beating
can result in strange behavior (try it!). 

6. Conclusions
In this paper, we gave an introduction by examples to the computer-aided study, the theory, special properties, as
well  as  some  qualitative  methods  of  impulsive  systems.  Our  examples  illustrated  that  the  formal  description,
theoretical  research  on  the  qualitative  properties  is  much  more  complicated  than  for  the  ordinary  differential
equations. Hence, the computer experiments are of great importance. We presented some new and/or specialized
form of built-in tools in Mathematica for such systems. The complete package contains many more functions to
help qualitative methods such as Poincaré maps, phase maps, but they will be subjects of other papers.

The packages used in the paper are summarized in the Appendix and are available on the web-site http://www.-
model.u-szeged.hu.
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Appendix. Summary of the packages
The following packages have to be loaded:

– VectorFieldPlots` Mathematica standard package for vector fields

– Impulseplot.m Visualization of impulses, jumps

– Idesolve.m Solve systems with fixed impulse instants

– IdeRKsolve.m Solve general systems with a Runge - Kutta method

  IDESolve package for systems with fixed impulse instants
IDESolve[ODErhs,var,tn,Imp,IClist,{t,t0,t1},opt]

It solves a system for several initial conditions based on NDSolve.
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ODESolve[ODErhs,var,IClist,{t,t0,t1},opt]

It solves an ODE for several initial conditions with NDSolve.

 IDERKSolve package for general impulses
IDERKSolve[ODErhs,Impulse,var,IClist,{t,t0,t1,dt}]

It solves general and autonomous systems based on a Runge-Kutta method implemented in [16].

 ImpulsePlot package to visualize impulses
FixedImpulseFieldPlot[Imp,tn,{t,t1,t2},{x,x0,x1,dx},opt]

Plots scalar I Hti, xL impulse field in the system 8t, x< for ti e tn, t1§ ti § t2. 

AnimateImpulse[Imp,tn,{t,t1,t2},{x,x0,x1},opt]

A 2D animation (table) of the impulse mappings I Hti, xL by ti e tn, t1§ ti § t2.

StackImpulse[Imp,tn,NN,{x,x0,x1},opt]

Stack in 3D (8t, x, y<) the impulse mappings I Hti , xL for ti e tn, t1§ ti § t2.

DoubleFieldPlot[{fld1_,fld2_},{x_,x0_,x1_},{y_,y0_,y1_}, opt___]

Plots two vector fields, the first one is with option ScaleFactor->None.

ContourFieldPlot2D[surf,fld,{x,x0,x1},{y,y0,y1},

{ContourOpt,FieldOpt,GraphicsOpt}]

Plots vectors of the field fld starting out of the contour line surf == 0. 

FixedImpulseFieldPlot3D[Imp,tn,{t,t1,t2},{x,x0,x1,dx},

{y,y0,y1,dy},opt]

Plots a planar I Hti, x, yL impulse field in the system 8t, x, y< for ti e tn, t1§ ti § t2.

JumpPlot[SS,II,{t, t0, t1},{x, x0, x1},opt]

Visualizes the general scalar impulse mapping. The curve SS == 0 and its image transformed by the impulse II are plotted in

the system 8t, x<.
JumpPlot3D[SS,II,{t,t0,t1},{x,x0,x1},{y,y0,y1},opt]

Az SS=0 and its image transformed by the impulse II are plotted in the system 8t, x, y<.

Visualizes the general 2D impulse mapping. The surface SS = 0 and its image transformed by the impulse II are plotted in the

system 8t, x, y<.
AutonomousJumpPlot2D[SS,II,{x,x0,x1},{y,y0,y1},opt]

The mapping of the impulses II on the curve SS = 0 are plotted in the system 8x, y<.
AutonomousJumpPlot3D[SS,II,{x,x0,x1},{y,y0,y1},opt]

The mapping of the impulses II on the surface SS = 0 are plotted in the system 8x, y, z<.
ContourLinePlot3D[f,{t,t0,t1}{x,x0,x1},{y,y0,y1},opt]

Special version of ParametricPlot3D to plots the f Ht, x, yL contour lines in �3 for t = const. (use Mesh option to set them) as well as the
contour surfaces with opacity (use option Contours). 
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