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Let a motion be described by a differential equatiout when some conditions hold an instantaneffeste
change the position and/or velocity of the movingdy Such systems are called impulsive. They are
mathematical models of several phenomena in alfifi®f science. Since their theoretical study istequ
complicated (combination of differential or diffaee equations), computer-aided methods are paatlgul
important in both theoretical studies and applarai The author developed packageMathematicato solve
and visualize different types of impulsive systetnsthis paper, we give several examples to dematesthe
most important properties of impulsive systems #redmain features of the developmentd/iathematica See
the web-page http://www.model.u-szeged.hu/indexzpbpon=edoc for [13] to find details. The packagan
attachment of this paper.

1. Introduction

In everyday life, it happens very often that unsieme conditions, an effect causes changes undeskert time
or either instantaneously. In this case, we spdaktaimpulses. Continuous and impulsive effects appear
together, they are called impulsive systems. Famgpte, we can meet such systems at discrete oewise
control, repeated drug administration, harvestmgse acceleration (control) of missiles, etc. Sa@ramples
can be found in our references. Due to the complitenathematical description, the experimentalysisidiseful
and informative, and sometimes it is the only waintvestigate the properties of such phenomena.

In order to help mathematical research and appitsitin sciences, the author developed tools [13ii4
Mathematicato visualize and solve different types of imputssystems. Note that the novelty of the mathemati-
cal theory and the arising technical difficultiesuses that such packages are not developed yetyiother
mathematical systems. The package has been comsiyugpdated, and now essentially improvedviathemat-

ica 8. Some special features are: numerical solutiompulsive systems; visualization of impulse figlglotting

the jump surfaces; functions for phase mappings.

This paper is based on [13] and [14]. Here weyappl developments to study some problems of varfaids,
as well as to introduce the reader to the thearg,some qualitative methods.

First, let us consider impulsive systems with fixegbulse instants. Then, we deal with general systi which
both the impulse instants and the impulses dependhe state variables. As special cases, we canside
autonomous systems. Note that the compiéa¢hematicacode is attached to the paper, or the curreniorers
can be downloaded from te given webpage. To runsthgements loading the packages is assumed (see th
Appendix for the summary).
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2. Systems with fixed instants of impulses

Theory [13]

Let the infinite sequencé} be monotone increasing and unbounded. Let thetitmd : RxR" - R" be
continuous, except att; (i =1, 2, ..) where it is continuous from left, and it can halscontinuity of the first
kind. In addition, let the functionis: R" —» R" be continuous. Then, the system

x'= f(t, x),ift £1, 1)
XEG+0) =Lix(t=0), (i=1, 2, 3, .)

is an impulsive system (IDE) with impulses at fixaedtants. Sometimes, it is comfortable to denléeitnpulses
by I(ti, ) (I : {t}xR">R").
Consider now an initial value

X(tp + 0) = Xo. 2

The solutionx(t; to + 0, Xg) of the initial value problem (i.v.p.) (1)-(2) cdre obtained as follows. Assuming
tk < to < txy1, take the maximal solutiox(t) of the initial-value-problem

X' = f(, x),
X(to + 0) = Xp

®3)

defined on the intervalty, T). If T <tx,1, then the problem is solved, T > ty,1, consider the solution on
[to, tks1], @nd continue it by the solution of the i.v.p.

X' = f(, x),

X(tes1 + 0) = |g1(X(ts1 — 0). )

Through the paper we assume that the solutiotisecdibove ininitial value problems are unique. \&e see that
both ordinary differential equations and differemgpiations are special cases of such systems img takx) = x

and f(t, x) =0, respectively. Hence, the properties of contirsuand discrete effects can appear together. In
addition, the impulse instants are not necessaniformly distributed, and it results in rather soal properties.
For theoretical details, see [2,3,13,19].

We emphasize that the initial condition is alway + 0) = X (right-hand-side limit) and the solution begins
with the solution of the ODE part. It is obviousthhe local existence and local continuabilitgétermined by
the ODE part. If the solutions of the ODE are cmmible to infinity, then the solutions of the IDBncbe
continued to infinity providing that the sequeritig has no finite accumulation point.

A new phenomenon appears if an impulse funcligr) is not one-to-one. The backward continuabilitynat
unique, since there exists at least two differehitions becoming identical dty, co).

The equilibria  of (1) are the constant solutions,e.,i the solutions of the system
ft, =0, h(ixy=x (k=1,2, .).

In order to help the experimental study of systd e need to work with the continuous and disceffects,
and hence we need the following tools:

— Describe the IDE.

— Vector fields to show the directions of solutimishe ODE part.
— Impulse fields to show the jumps by the impulses.

— Solve the initial value problems of the IDE.

— Visualize the solutions, trajectories.

As known for ODE's, the direction fielfl, f(t, X)} gives the tangent vectors of the integral curveshie
extended phase spaée R". We can also introduce the impulse fi¢@ I (t, Xx) — x} in RxR" that gives the
jumps by the impulses. We emphasize that both trectibn and the length of the vectors are esserifia
f(t, x) = f(X) (the ODE is autonomous), the tangent vectors eftthjectories of the ODE part are given by the
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vector field f(x) in the phase spad®'. Analogously, ifl,1(X) = 1(x), then the impulse vectol$x) — x can also
be shown in the phase space. Note that althoughnipalse is independent of the time, the systemas
autonomous, since the behavior depends on thentagta

Next, we consider the simple example of an impelsiverturbed harmonic oscillator to present thelsto
developed, as well as we consider the experimaidabf some qualitative methods for impulsive systevith
fixed impulse instants.

A damped harmonic oscillator under impulse effect

Consider the harmonic oscillator, and let the dpee impulsively modified periodically. We obtaimet follow-

ing system
X'=y, y ==X if t £t 5)
X(Gi +0) = x(ti = 0), y(ti + 0) = I; (y(ti — 0)),
wheret; =i T. The case of continuous damping effect woulckbe y, y' = —x—ay. Now, let the oscillator be

damped impulsively in the form
y(ti + 0) = bj y(t; — 0)

where O<b; < 1. If bj =0, then the speed becomes zero (resulting nonunggsiiproblems of the i.v.p, that
cannot happen for ODE'S), and no impulse workg # 1. Note that the oscillating body is "kicked" bark

bi <0, and for| b | > 1 the speed is impulsively increased. The detdfledretical study can be found in [5-12].
Now, consider the damping case step by step.

The system

The right-hand-side of the ODE is written as thetoefields require.

var = {X,Y };
rhs = (_01 (1) ).var;
The behavior of the harmonic oscillatior is knowyvge do not consider it separately.
Let T =1 andt n be the sequence of impulse instants. The impalsegiven as follows:
T=1:;b =0.7
tn = Table [nT, {n, 1,100 }1;

Fixedlmpulse [n_, tn_List, u_List 1 :={ull, b *u[21};

Hereu is the phase variable. This parameter structussssimed by every commands. The window parameters
are

t0 =0; t1 =6;
x1 =yl =-1,; X2 =y2 =1

Before doing anything, load the needed packages.

Needs ["VectorFieldPlots™ 1;
SetDirectory ["FileName" /.NotebookInformation [EvaluationNotebook [11 /.
FrontEnd FileName  [d_List, nam_, ] > ToFileName [d]];

<< package//impulseplot.m
<< package//idesolve.m



<< packagel//phase2d.m

Vector fields
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Since the right-hand-sides are time-independentcaveplot both the vector field of the ODE and itmpulse

field in the{x, y} phase plane.

Fields2D
{x, x1, x2 1},

= DoubleFieldPlot

{y: y1,y2

[ {rhs, Fixedlmpulse
}, Axes - True, PlotPoints

Lo

[1, tn, var
- 7]

1.0 -0.5
Vov e

\ N g
NN

] -var},

The black arrows belong to the vector field of Ol colored ones show the impulses at pgints, y}, where
tiet n. The behavior of the trajectories cannot be cdnjed by this figure, since the impulse instants ot
shown here. To have more information, we needigiésfin the extended phase space.

dx = dy = 0.4
FieldODE3D

= VectorFieldPlot3D

[Flatten

[{1 rhs }],

{t, 0, t1, T

{x, x1, x2, dx '}, {y, yl, y2, dy 1}, Axes -> True, VectorHeads

/2},
-> True ]
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FieldIMP3D = FixedlmpulseFieldPlot3D [Fixedlmpulse, tn, {t, t0, t1 },
{x, x1, x2, dx '}, {y,vyl,y2,dy }, ColorFunction -> (Hue[#l1] &)1

The impulse vectors are plotted at the elementsndbetweert 0 andt 1. The meaning of the parameters of the
statementi xedl npul seFi el dPI ot 3D is obvious. Note that functions for scalar systemes also available

(Fi xedl mpul seFi el dPI ot , Ani mat el npul se, St ackl npul se).

Fields3D = Show[FieldODE3D, FieldIMP3D ]

Solving the system

Now, let us solve the system. The initial timé @& and the solutions start from the unit circletsd phase space.
The solver command isDESol ve, that creates InterpolatingFunction objects. Ive® the system intervalwise
on the intervalgt;, ti,1] usingNDSol ve, and the obtainetint er pol at i ngFunct i on objects are joined at
each step. This function requires only the rightehaide of the system (as the vector field plasid can find
the solutions for several initial values. The re@ih list of parametric curves.

7T

IC = Table [N[{Cos[u],Sin [ul}l, {u, 0,2 g}];

Traj [t_ ] = IDESolve [rhs, var, tn, Fixedimpulse, IC, {t, t0, t1 }1;

Visualizing the solutions

Basic visualizations of the solutions can be dopedmbinations of Plot, ParametricPlot and Paraofiot3D
commands. The coordinates are well visible by ugiegollowing statement:
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Mar[Plot [#, {t, tO,tl }, PlotRange -> {-1, 1}, ImageSize - {250, 180 }] &,
Traj [t]1] // ListAnimate

O DIRFIE]
1.0
0.5 /l/><
1 2 ‘ s s 6
_0.5 L
-1.0t

Obviously, the continuous curvej#), the discontinuous ig(t) = X' (t). Let us plot the trajectories together with
the fields:

PlotTraj = ParametricPlot [Traj [t], {t tO,t1 11
Show[Fields2D, PlotTraj ]

Let us consider the integral curves and the vditas in 3D:


./kj1.swf
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PlotTraj3aD = ParametricPlot3D [Map[Prepend [#,t 1 & Traj [t]1],
{t, 10, t1 }, PlotStyle - {Thickness [0.005 ]}, ImageSize - {250, 200 }7;
Show[Fields3D, PlotTraj3D ]

We can observe immediately thatyit;) = 0, the damping is ineffective. It is an importaattfin the research on
asymptotic stability properties of this system ($£@,12]). In the special caskE=nx, tj=in, there exists a
solution not tending to zero, Tf < &, the zero solution is attractive [6].

Asymptotic behavior, the method of auxiliary functions

Since the most of the systems are theoreticallpluable, qualitative methods are of importancenteestigate
the properties of the solutions without explicikgowing them. The method of auxiliary functionse thecond
method of Liapunov, is one of the most effectivaliative methods in studying asymptotic behaviee( for
example, [2], [13], [18] and [19]). The basis oétmethod is very simple. Here, we only show theegandea
on our example, how the method can be aidellahematicafor impulsive systems.

The total energy of the system (5) is
1
VI{x_, y_ }]:= B Xy} {xXy}1?
The graph oWV can be plotted:

Plot3D [V[var ], {X, x1,x2 }, {y,yl, y2 1},
BoxRatios - Automatic, MeshFunctions - {#3 &}]

Since the energy function is positive definite, toatour lines in the phase spaeare closed around the origin
(circles), and cylinders around the akis the extended phase space.

level = {0.1,0.3,0.5 };
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ContourV = ContourPlot [V[var ], {X,x1,x2 3}, {y,yl,y2 1},

Contours - level, ContourShading - False ]
1.0}
0.5
0.0
05+
“10- —
-1.0 -0.5 0.0 0.5 1.0
ContourV3D =

ContourPlot3D  [V[{X,y }]1., {t O, t1 }, (X x4, x2 '}, {y,yl,y2 3}, Contours - level,
ContourStyle -> {Opacity [0.2 1},
MeshStyle -> {Opacity [0.5 ]},
MeshShading -> {Automatic 1},
MeshFunctions -> {#1 &}, Mesh - {Take [tn, 5 ]},
AxesLabel -> {t,x,y }, BoxRatios - Automatic ]

We investigate how'(x, y) changes along the solutions, i.e., we stdd(t), y(t)). For example, i/ (x(t), y(t))

is decreasing, the trajectories cross the contioes Ifrom outside to inside. If it is the case &wery small
enough contour lines, the zero solution is stabte.the details of the stability properties andotieens, see, for
example [2,13,18,19]. The main point of the metlimdhat the change of the functidA(x(t), y(t)) can be

followed by the derivative along the solutions drnydthe jumps at the impulses without knowing thiitsmns
themselves.

As it is well known in the qualitative theory offidirential equations, fot+t (i=1, 2, ..), V(X(t), y{1)) is
differentiable fot + t; (i=1, 2, ..) and

LV, yv) =gradV (x, y). (X', ¥} ={x y}.{y, =X} =0,

i.e., the scalar product of grad(normal vector of the contour lines \@f and the tangent vector of the trajecto-
ries is zero, since the harmonic oscillator presgenergy.
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dVv = D[V[var ], {var }].rhs
0

On the other hand, at the instafitgi = 1, 2, ..), the change of the energy is discrete, so we twualculate the
jump of the energy:

VXt +0), yt +0) - V(X - 0), yt -0)).

In our example, we have:

Simplify  [V[Fixedlmpulse [1,tn,var 1] -V[var ]]
-0. 255 y?

which shows that the impulses decrease the endngpevery(t — 0) # 0. The theoretical study would lead very
far, so we consider only the visualization tooldiathematicaObserve that in our case both the continuous and
impulsive effects change the energy in the sanextian. The behavior is more complicated if theykmvagainst
each other. This will be the case in section 6,re/lee study the physical pendulum with externatdst

Let us show the functiong(x(t; + 0), y(t +0)), V(x(t — 0), y(ti — 0)) as well their difference at, colored by
red, blue and green, respectively. In this spepiample, the impulses are independent. of

Plot3D [{V[{X,y }],V [Fixedlimpulse [1,tn, {x,¥ }11,
V[Fixedlmpulse [1,tn,var ]]-V[var 1}, {x,x1,x2 1}, {y,yl y2 1},
BoxRatios - Automatic, PlotStyle -
{{Blue, Opacity [0.3 1}, {Red, Opacity [0.5 1}, {Green, Opacity [0.5 1}},
RegionFunction - ((#2 > #1) &), AxesLabel - {X,y,V 1}]

This figure agrees with the relation between thgetitories and contour lines. To really visualize imethod, we
can show the contour lines of the energy functiodh the vector fields.
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Show [Fields2D, ContourV
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Note that these plots can be also applied to lbeakperimentally the trajectories in other ca@sexample to
find limit cycles. If the solutions are known, warcobtain more attractive figures. To plot the ggerlong the
solutions is very simple.

<\O _;\
|
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w
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Plot [Map[V[#] &, Traj [t]], {t tO,t1 11
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The contour lines of the energy function and triajees are

Show [PlotTraj, ContourV ]

Finally, consider the behavior of the solutionshie extended phase space.
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Show[ContourV3D, PlotTraj3D, PlotRange - All, BoxRatios - Automatic ]

The figures help to lead to the conjecture thatyesgelution tends to zero as— co. This is really true as proved
in [5]. The proof for this simple example is noo tdifficult, but we have to note that the problemgeneral is far
from trivial. We recommend to use our programmésva to investigate the following systems:

& Continuously damped oscillator

Either for the damped equation
X" +a)x'+x=0, at)=0, (6)

or for the analogous impulsive system (5) witk B < 1, there is no necessary and sufficient conditimved
yet for the asymptotic stability of the zero sabuti

& Oscillators with nonlinear elastic force

The problem is even more complicated for nonlinesgillators. In particular, we recommend the readedo
experiments for the system

X" +]x[%sign(x) =0, >0, a # 1,

(7)
X'(NT+0) =bx'(NT-0),T >0,beR.

It can be proved that this system has infinitelynynperiodic solutions [11], what is not true foetlinear case.
& Oscillators with nonlinear damping
If the impulse is nonlinear, such as
X' (4 +0) =|x" & =0 |#sign(x" (i —0)), 8)

we can obtain relaxation oscillations [13] an agadb the Rayleigh equation. The qualitative projesrof such
impulses are not investigated yet. For illustragjolet us consider the trajectories of this systeth different
settings:

— B=0.4;t=0.2i

X(1),X(t)

X(t)
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- B=0.4andt =i%¢
X(1),X(t)

6

4 [T m——

2 . . ) . n ®
-2 0 0 0t B @_}@W“ EJ ’

-4

- B=04;t=()"°
X(0,X() X(t)

3. Systems with general impulses

Theory [13]

Now, consider general impulses, which appear wherirtegral curve of solutions of the system
x'=f(, x), (f :Rx R"=R").

meet hypersurfaces in the extended phase spaces precisely, let the scalar fields, S, ..., S, ...:
R x R" - R be continuous, and the functions (impuldgs)l,, ..., li, ... :RxR" - R" be given. The equations
S(t, x) =0 define surfaces IMRxR". Let us assume that i§(t, X)=S;jt, x)=0 (i, j=1,2, ..), then

li(t, ¥) = I(t, ), i.e., the impulse system must be well-definednsier a solutionx(t) of the ODE. If

S(r, x(1)) =0at a momentr, then let us continue(t) with the solution of the ODE with the initial vau
li(r, X(1)), i.e., X(r + 0) = lj(r, X(r — 0)). By this method we defined a general impulsivetesyswith state-
dependent impulses:
x'= f(, x), if S, x(t)) £0; ©
XT+0) = li(r, x(r=0)), if Sx,x(t))=0, (i=1, 2, 3, .).

Assume thatf is continuous if§(t, X) £ 0, and it has discontinuity of first kind i§(t, x) =0 (i=1, 2, 3, ..,
there exist the "half-sided" limits ligmxssuw<o T(S W and limy;usxsswso (S U). The solutions are left-
continuous, piecewise differentiable functions,ihgwiscontinuities of first kind at the instanfsrmpulses.

It is obvious that the systems with fixed instanfsimpulses can be obtained by giviigyt, x) =t —t;. If
S, =S (i=1, 2, ..), then we obtain autonomous impulses. For thisecaaswill consider an example in
section 4.
Note that a functior§ can define infinitely many instants. For exampje; iT can be given by s@%r-t) =0.
Hence,S(t, x) = 0 can mean several, even infinitely many surfatés. impulsed(t, x) (i=1, 2, ..) can also
be expressed together. Hence, the system (9) camitben in the form
x' = f(t, x), if S, x®) # 0,
. (20)
X(t+0) =I(r, x(r=0)), if S(r,x(7)) =0.
For technical reason, we keep the original form (9)

Equilibria on[ty, T) are the constant solutions. A poing R" is an equilibrium if and only iff (t, >_<) =0 and

li(r, X) = x for everyk, providedS(r, X) = 0 andt, 7 & [to, T).
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Properties of the surfac&(r, x) =0 are of importance. For example,Sf(r, X) = 0 is invariant for the ODE,
the integral curves can remain on it, and henceéxé impulse instant cannot be determined.

In addition, continuability of the solutions esselty depends on the impulses and the shape oftinfaces
S«(t, X) = 0. A solution can meet the surfaggr, x) = 0 several times, such that the solution is beatek from
the surface. This is the case ifS(r, x(1))=0, St x(©)<0(>00 for t<r and also
S(r, li(r, X(t = 0))) < 0( > 0). Graphically, the solution cannot go to the otkigle of the surface. This phe-
nomenon cannot happen for impulses at fixed instant

We can study system (9) Mathematicasimilarly to systems with fixed impulse instansit the implementa-
tions of the commands are completely different:

— Describe the ODE as before.

— For impulses, needed to give the scalar fieghdd, X) (RxR"—R) and the impulse mappings(t, X)
(RXR" > R").

— Visualize the Impulse (jump) mappings, i.e., tmage of the surfaceXk(t, x) = 0 by the impulse;(t, x).

— Solve the initial value problems of the IDE.

— Visualize the solutions trajectories

Now, we will illustrate the main features, and ddes an example with strange behavior.

A strange scalar system
Consider the following system [2]

x' =0, for S, x(r+-0)) # 0,
(11)
X(t + 0) = x(r — 0)? sign(x(r — 0)), for S(t, x(r — 0)) = 0,

where S(t, x) = sin(z(t — X)), if | X| <2. This system can be also written in the form

x'=0, for t+1i(x),
X(t + 0) = X(t — 0)?signx(r = 0)), if t=7i(¥) (i=1, 2, 3, .),

whereri(X) =X + 61, if |X| <2.

Let us define the system MathematicaThe variables, the right-hand-side and the in¢@iditions are given as
before.

First, load the needed packages.

SetDirectory ["FileName" /.NotebookInformation [ EvaluationNotebook [11 /.
FrontEnd'FileName  [d_List, nam_, ] :» ToFileName [d]];

<< package//impulseplot.m

<< packagel//iderksolve.m

var = {x};rths ={0}; t0 =0;t1 =8;dt =001 x1 =-25 x2 =25;
IC = {{_2}7 {-1}1 {_11 }v {-09 }v {1}1 {09 }v {11 }l {2 }}v

Impulses are given in a finite 14§ 1;, di}, i.e., {{S 11, du}, {S, I2, do}, ..}, wheredi €{0, 1} is a technical
parameter, needed for the solver routine. Thewe igechnical restriction: the impulse functions s given
coordinatewise in lists.

1
S[t ,x_ 1 := Which [Abs [X] < 2, Sin [E 7 (t -x)], True, 1 ];

Impulse = {{SIt, x 1, {x*Sign [x1}, 0 }};
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We can visualize the impulse effect witimpPl ot on the "surfaceS(t, x) =0, i.e., the point$t, x} satisfying

St, X) =0, and the imagét, I(t, X)} together. Obviouslyx=1 is a fixed point, we will find beating effects for
xe (=1, 0 andxe (1, 2. The third element (important later in the solvprgcess) in the impulse list is now used
to color the contour lines (black and blue tbe 0 andd =1, respectively). For 2D systems, the analogous
JunpPl ot 3D statement can be applied.

JumpPlot [Impulse [[1]]1, {t, tO,t1 , {X, x1, x2 }, AspectRatio - Automatic ]

)

Now, solve the system using th®ERKSol ve statement. The solver algorithm and some techigsakes are
descibed below:

I\J

|_\

o

The meaning and structure of the parameters witith@éous below. In solving the system to find thextinstant
when the impulses occur, we have to solve the equa&; (t, x (t)) = 0 while x(t) is being solved simulta-
neously. Hence, this equality should be verifiethia solving process of the ODE part. It can beedonEventLo-
cator in NDSOLVE. Instead, to solve the ODE betwten impulses, we use a Runge-Kutta method withdix
step size (the implementation by R. Maeder [16}d astead of solving; (t;, X (t;)) = 0, we verify the
change of sign of the functioi® (t, x (t)) stepwise. Note that wrong impulses can appedeifftinctions
S are not continuous!

Let the last step be=gs. The solution is of the forrf{sg, Xo}, {S1, X1}, ..., {S, X}, {S+1, Xi+1}}. If every product
S(s, X) S(s+1, Xi+1) is positive, we continue the solution of the OD&nfi {51, X1} and find{s,, X,2}. If for
oneS(t, x(t)) we obtainS(s, x) S(S+1, X+1) <0, thenS(t;, x(1))) = 0 for somer; €[5, S.1], and the correspond-
ing impulsel;(t;, X(1})) should be applied. We do not use finer approxiomatonly applyli(s, X)) or li(Ss1, Xi+1)
dependingd; =0 ord; = 1 in the description of the impulse, and the solutof the ODE will be continued from
the list {{so, Xo}, {S1, X}, ..., {S, Xt} {s, [(s, XD}} or {{so, Xo}, {St, Xa}, - {Si, X}, {Si+1, 1(Si+1, Xi42)}}, respec-
tively. Different settings can result in differestlutions. In the casd = 0 (impulse atg) the solver can cause
wrong beating. Fod, = 1, the solver can avoid real beating, since thetisol can continue on the "other side" of
the surface5(t, x) = 0. Note that if the function§(t, x) =S(t), i.e., the case of fixed instants of impulses, the
setting must be; = 1!

The result is a lis{sol 1, ..., sol M, wheresol i is the solution belonging to th& initial value. The
structure of each solution is {{to, Xe(tg), ..., Xn(to)},
(N} {tirxl(ti>v vXn(tI>}}

Now, turn back to our example, and solve the sys#étin d = 0 (the system will have beating effect, and we
must not ignore it).

sol = IDERKSolve [rhs, Impulse, var, IC, {t, 10, t1, dt }1

An underflow can occur for the solution wi#0) = —0.9 because of its unusual behavior (see the figack
explanations below).
Plot the solutions and the s&t, x) = 0 together:

pltl = ListPlot [sol, Joined - True, PlotStyle - {Thickness [0.01 1}1;
plt2 = ContourPlot [S[t, x ], {t tO, t1 }, {X, x1, x2 3},
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Contours - {0}, PlotPoints - 100, ContourShading - False J;
Show[pltl, plt2, PlotRange - All ]

We can see that the behavior of the solutions maiepend on the initial values. In particular,andoe proved
that:

If || =2, there is no impulse effect on the solution.

If 1 < xg < 2, then there are finite impulses on the same &dsetf(beating effect).

If -2 < xg < -1, then there are finite impulses at different faces".

The pointsg = + 1 andxg = 0 are fixed points.

If 0 < Xxg <1, then there are infinitely many impulses at diéfe "surfaces" at the instants lim;_.7j = oo,
and lim_. X(1;i £0)=0.

If —1< Xg<0, then there are infinitely many impulses at thme "surface" at the instants lim;_ .7 = 2,
and lim_., x(rj £ 0) = 0. Fort > 2, the solution is identically zero.

Some notes

It can happen thdtDERKSol ve does not detec (t, x(t)) =0, if the solution only touches and does not cross
this surface.

The program applies the first impulse in the listpul se, for which the inequality (s, X) S (S41, X+1) <0
holds. Although the surface&(t, x(t)) = 0 are assumed disjoifit, 1, 2, ..), they can be close to each other. If
the step sizelt is not small enough, the conditi®(s, x) S (S+1, X+1) <0 can hold for several functiors,
and hence the solver may not choose the real surfait seems to happen, use smaller step sizeaorhing-in
technique for better approximation.

4. Example: swinging

Every parent knows how to give children a swinge Thodels of swinging are simply variations of teenghed
nonlinear pendulum with an external force. It cardiescribed by the system

X'=y, y =—ay-sinx) (a> 0). (12)

This equation and the following figures are welbtim, but let us see the vector field and the ttajégs as
strarting points before the other cases.

<< package//odesolve.m

a=0.2;

var = {X,Vy };

swing :={y, -ay -Sin [x]};

X1 =-m x2 =3myl =-3;y2 =3;
t0 =O; t1 = 20.;
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The total energy of this system is

y2
VI{X_,Yy_ }] =— +J Sin [u] du;
2 o

- False J;

ContourSwingV =
Yoo {y.yl y2

ContourPlot  [V[var ], {x, x1, x2
= VectorFieldPlot [swing, {x, x1,x2 1},

}, ContourShading

SwingField
{y, y1, y2 1}, Axes - True, ScaleFactor - 17;
Show [ContourSwingV, SwingField, AspectRatio - Automatic 1;
Now, ODESolve is a user-friendly form for NDSolve:
IC = Table [ N[{O.,u }1, {u, 1.4, 3,0.2 }1;
PendulumTraj [t_ ] = ODESolve [swing, var, IC, {t, t0, t1 }1;
Consider the trajectories:
PendPlot = ParametricPlot [PendulumTraj [t ],
{t, 10, t1 }, PlotRange - All, ColorFunction - (Hue[#3] &) 1;
Show[SwingField, PendPlot, ContourSwingV ]
—— T —
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What is important in the point of view of givingsaving in the next sections is that the pendulumtoam over
the upper equilibrium, if the speed is too highnkketoo good swings with small friction or air-drag danger-

ous.
The external force (giving a swing by parents) dapend on the time, the position and the velocityhe

pendulum either continuously or using impulses.eNibtat kids can swing by themselves without anrazie
hand, as they change the length of the pendulumdying periodically their legs (see [4] and theerehces

therein).
Let us consider different cases of the parent$inigoes: different external forces and differemételgies to to

choose the "best" time for the force. The readeer) can combine and investigate them to fincadiyrgood one.

Continuous, periodic external force

A simple periodic external force can be @psand the model is
—ay-sin(x) + cogt) (a> 0). (13)

X'=y, y' =
Although this model is very simple, mathematicatlyis very interesting. It was proved only in 200y T.

Csendes, B. Banhelyi, and L. Hatvani [4] that tbgaation witha=0.1 can produce chaos. We can obtain
similar behavior, if the external force is a siggeking periodic function with period long enougbngier then

the oscillation time of the solutions). We let tteader study the cases with short period. Remeithia¢rthe

oscillation time depends on total energy. HeretHetforced system be
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X'=y, y =—ay-sinXx) + 0.5((:03—;)2 (a> 0). (14)

force = {O, 0.5 Cos [%]2}

For small initial speed, the motion is asymtotiggleriodic. To see this, let us solve the systemd, plot the
solutions.

t0 = 0; t1 = 50.;

IC = Table [ N[{O.,u }], {u, 0.3,0.8, 0.1 E

PendulumTraj [t_ ] = ODESolve [swing + force, var, IC, {t, t0, t1 }1;
Plot [PendulumTraj [t][[AlIlL1 7], {t tO,tl }, PlotRange - All ]

If the parent has too much energy and give a lamigial speed, the motion can become rather unptehlie:
40}

30
20

10+

Periodic impulsive swinging

Now, let the external force be impulsive. Then peadulum is swinging by equation (12), and at ¢eiitsstants,
an impulsive effect increase the speed to compendet damping. One possibility is a periodicallyegi
constant impulse that turns the swing toward thefcequilibrium:

X'=y, y=—ay-sinix), a>0, if t £kT,
X(KT+0) =x(KT -0, (15)
YKT+0) = y(kT —0) = Acsign(x(k T = 0)), A > 0.
A "sophisticated" impulse should also take intocart the value of the speed.
Based on the example in section 2, system (15)beagasily investigated iMathematica For the qualitative
properties several questions may arise. What ptiegeona, T and {bs} can guarantee a stable nontrivial

periodic swinging? What impulses can result chadhis system? We lead to (try to) answer thesetre to
the reader, and we will do only some basic invasitgs.

tn :=Table [nT, {n, 1,100 }1;
Swinglmpulse [n_, tn_List, u_List 1 := {u[l], u [2] - A Sign [u[1] 1};

X1 =-m X2 =myl =-2,y2 =2;
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t0 =0; t1 =40,

The vector fields show the direction of the moftimthe phase space:

Fields2D = DoubleFieldPlot [ {swing, Swinglmpulse [1, tn, var ] -var },
{x, x1,x2 '}, {y,vl,y2 1}, Axes - True, PlotPoints - 7, AxesLabel - {Xx,y }]
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Consider the solutions:

IC = Table [ N[{O.,u }], {u,1,24,02 }1;
SwingTraj [t_ ] = IDESolve [swing, var, tn, Swinglmpulse, IC, {t, t0, t1 }1;

Animate the solutions(t) and the trajectorigx(t), y(t)} with respect to the initial speed:

Mag[Plot [#, ({t, tO,tl }, PlotRange -> {-2, 2 }, ImageSize - {250, 180 },
AxesLabel - {t,x }] &, SwingTraj [t][[AllL1 111 // ListAnimate

ol DEEIE]
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./kj2.swf

Investigation of impulsive systems with Mathematica 19

May [ParametricPlot [#, {t, tO,tl }, PlotRange - {{-2,2 1}, {-2,2}},
ImageSize - {250, 180 }, AxesLabel - {X,y }] &, SwingTraj [t]] // ListAnimate

{ DENS=Y

<

We can have the conjecture by our figures that teshod looks good enough to provide a stable smgng
Every solution looks like tending asymptotically #operiodic motion. But it depends mainly on thé&iah

conditions. In addition, it can be of interesttoéastigate the dependence on the period and vélire émpulse.
It is also worth to investigate some cases of |apged.

Smart state-dependent swinging

Consider now some cases of state-dependent swingiiregparent stands on one side of the swing, hercean
assume that the impulses are given Xay > 0. A rather practised parent would do the followihg or she
pushes back the swing if the velocity is zero, #ralforce (impulse on the speed) not only showsatdvihe

lower equilibrium, but it is reciprocally proportial to x(t), for not too big angle (such aze(t)<4—5”). For
example, let the impulse bgt + 0) = a(>A<— Max( 1 X(0) 1, >A<))) sign(—x(t — 0)). Now, such a system (15) takes the

form:

X1 =-m X2 =myl =-2,y2 =2

Smartimp [x_,y_ ] = {x,

Piecewise [{{[4—; - Min [Abs [X], ?]] Sign [-X1, [Abs [X] = 4—;] } {y, True }}]};

Smartimpulse = {{y, Smartimp [x,y 1,1 }};

One can verify that the parameter value 0 impul se would result in nonrealistic solutions. The systiEsm
autonomous, hence we can plot the vector field taedjumps in the 2D phase space. The vector fiélthe
damped pendulum is well known:

Use the statemeiiut ononousJunpPl ot 2D to visualize the impulse mappings.
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AutonomousJumpPlot2D [Smartimpulse [[1]], {X, x1,x2 },

{y, -2, 2}, PlotPoints - 30, PlotRange - All, AspectRatio - Automatic ]

y

Solve the system and visualize the solutions:
t0 =0;t1 =20;dt =0.05 IC ={{0,13}, {0,024 1}, {0, -0.2}};

smartswing = IDERKSolve [swing, Smartimpulse, var, IC, {t, 10, t1, dt }1;

ListPlot  [smartswing /. {s_?NumericQ, u_?NumericQ, v_?NumericQ } > {s,u},
PlotRange -»> All, Joined - True ]

/ \
~ . / " .
-1t \\/, \V/ \\\ /
_2 L

ListPlot  [smartswing /. {s_?NumericQ,u_,v_ } -» {s,Vv }, Joined - True ]

AT
UL

ListPlot  [smartswing /. {s_?NumericQ,u_,v_ } -» {u,v }, Joined - True ]

J. Karsai
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We can see, that the trajectories approximate iadynle in the phase plane.

& Exercise

We recommend the reader do more experiments arductnthe precise mathematical proof.

Lazy swinging
A lazy parent does not care about the directiorthef motion, he pushes the swing toward the eqiuitibr

(x(t) y(t) = 0) if it reaches a given positio;] but he tries to be smart enough to pay atterttiospeed, i.e., it
cannot be too big (to avoid the swing turning ové@e strength of the impulse be reciprocally prapoal to

the angle. This is a quite, since the damping &atob large and hence the swing cannot reach #dgairequired
position. Now, such a system can be:

X1 =-m X2 =myl =-2,y2 =2

Lazylmp [x_,y_ 1 = {x, Piecewise [{{-2y,0 =<y <2}, {y, True }}1};
Lazylmpulse = {{x-0.5, Lazylmp [X,y 1,0 }};

Solve the system, and then plot the solutions hedrajectories.

t0 =0;t1 =20;dt =0.01; IC ={{0,08 }, {0,113}, {0,211 3};
lazyswing = IDERKSolve [swing, Lazylmpulse, var, IC, {t, 10, t1, dt }1;

ListPlot  [lazyswing /. {s_?NumericQ, u_?NumericQ, v_?NumericQ } > {s,u},
PlotRange -> All, AxesLabel - "t X" }, Joined - True ]

A O AL
5“\

ListPlot  [lazyswing /. {s_?NumericQ,u_,v_ } - {s,V },
PlotRange - All, AxesLabel - "y }, Joined - True ]

=
74
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ListPlot  [lazyswing /. {s_?NumericQ,u_,v_ } - {u,Vv },
Joined - True, PlotRange - All, AxesLabel - Y]

We can see that there must be a periodic solutiohjt is unstable. This "lazy" method cannot l¢adstable
swinging. As before, we leave this problem to tsader.

& Exercise

We recommend the reader to find and investigaterdgmart" swinging strategies.

The motion of a bouncing ball

Let us consider another well known phenomenonnthton of a bouncing ball. The question is how takethe
motion of the ball periodic, and is the possiblequic motion stable?

The free bouncing

Let the ball fall down from a given height(some initial speed is possible). Lét) denote the distance of the
ball from the floor. The motion is described %Y= —g whereg is the gravitational acceleration. When the ball
reaches the floor at(x(r) = 0) a collision happens, and

X'(t+0)=—-ax'(tr-0)

where O< a < 1. If @ =1, then the collision is perfectly elastic.df= 0, then the collision is perfectly inelastic,
thus the ball stays on the floor. Belowt) = x' (t) and for the simplicity we takg =1 anda = 0.8. The solutions
are:

Clear [a];

var = {X,V }; egnparm = {g-> 1, a- 0.8 }; xvdot = {v, -g} /. egnparm;
Impulse = {{X, {X, -aVv}, 0}} /. eqnparm;
sol=IDERKSolve[xvdot,Impulse,var,x0list,{t,t0,t1,dt 1

cimke = {"x", "x" };

ListSolPlot [sol, cimke, ImageSize - {200, 100 }1[[11]

X X
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We can see the well known fact that the ball asgiigatlly tends to the floor. To try to keep thelld@uncing,
we consider two special cases: bouncing at fixeghtend fixed instanst.

Giving a beat at a given height
Let the ball move upwards and ét) < h. As it reaches(r) = h at somer, let us beat it back, i.e.,
X'(t+0)=-8X"(r-0), (16)

whereg > 1, as the energy must be increased. Let us do sepeiments.

Changing the initial speed

Fix the constanta andg, and let the ball start from the positiorc& = hg, at different values of initial speed.
Comparing to the previous example, we need onlyntalify the variablel npul se. Here h=1, 8=1.3,
hg=1.5.

var = {X,V };
egnparm = {g-» 1, a-08,h0 -15h ->1., B-13};
xvdot = {v, -g} /. egnparm;
Impulse = {{X, {X, -avVv}, 0},
{Piecewise [{{x-h,v =0}, {1, True }}1, {X, -BV}, 0 }} /. egnparm;
t0 =0; t1 =8; dt = 0.005;

The ball is beaten back only when it is moving apg(v = 0), hence thd® ecew ce function is used in the
definition of | npul se.

XO0list = Table [{hO, -vO}, {VvO,0, 3,0.2 }1 /. egnparm;
sol = IDERKSolve [xvdot, Impulse, var, x0list, {t, t0, t1, dt }1;

Plot the solutions and their derivatives:

label = {"x", "x" };
ListSolPlot [sol, label, ImageSize - {200, 100 }] // ListAnimate
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We can observe that for any (either small or laig#jal speed the ball loses energy at each datlisvith the
floor, hence it can reach the needed lattitude @t inite times. We encourage the reader to piotdéence, to
keep the ball bouncing, the lost energy must bepesaited. Consider such a case in the next point.
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Changing the beating force (by constant g)

Let the ball just fall downx(0) = hg, x'(0) =0), and then change the constAnh formula (16) interactively.
Fix the constant (depending on the properties of the floor). Wedheely to modify the variablerpul se in
the previous example. Hede=1, hy=1.5,a=0.8, andB €[1, 2]. Note thathy must be big enough to give
enough energy to the ball to redth

var = {X,V };
egnparm = {g-» 1, a-08h0 -15h -1};
xvdot = {v, -g} /. egnparm;
Impulse = {{X, {X, -aV}, 0},
{Piecewise [{{x-h,v =20}, {1, True }}1, {Xx, -BVv}, 0 }} /. egnparm;

t0 = 0; t1 = 8; dt = 0.005;
x0list = {{2,0 }};
sol = Table [

IDERKSolve [xvdot, Impulse, var, xO0list, {t, 10, t1, dt Y100111, {B,1,2,01 31;

Plot the solutions and their derivatives. Move sheer to see the different cases:

label = {"x", "x" };
ListSolPlot [sol, label, ImageSize - {200, 100 }7] // ListAnimate

ol DMEEIE]
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We can observe at smgll that the ball loses energy and can reach theedelegight at most finite times. On the
other hand, for bigg the ball bounces infinite times, the oscillatiame (time elapsing between reaching the
extremal positions) is smaller and smaller. So lleisncing strategy is not smart enough. A goodegsashould
takte into account both the current height andcigloHere we recommend the reader to do some Eesrand
experiments.

Beating at fixed instants
We can also try to bounce the ball by beatingxadfiinstants using the following rule:
X' (T +0=-B|x'(T-0)], T>0, g=1.
Let us fix nowa andB, and change the time The current parameters are- 0.8, 8 = 1.5, h = 1, hg=1.5.

Animation: changing T

Clear [x, v, T,g, a, Bl;
var = {X,Vv };eqnparm ={g-> 1, a«-08h0 -15Vv0 -0, B->15},;
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xdot = {v, -g} /. egnparm;
it
Impulse = {{x, {X, —av}, 0}, {Sin [—] {X, -BAbs[v]}, 1 }} /. egnparm;
T
t0 =0; t1 =10; dt = 0.005; xOlist = {{h0, vO }} /. eqnparm;
Solve the system and plot the solutions:

sol = Table [
IDERKSolve [xdot, Impulse, var, xOlist, {t, 10, t1, dt }1017, {T,0.2,15,0.1 }1;

ListSolPlot [sol, {"x","x™ }, PlotRange - {{t0,t1 }, {-5,5 }}] // ListAnimate
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We can see that this strategy looks worse tharirgeat fixed height. Even more, rare (incred¥eig beating
can result in strange behavior (try it!).

6. Conclusions

In this paper, we gave an introduction by exampethe computer-aided study, the theory, speciapgrties, as
well as some qualitative methods of impulsive systeOur examples illustrated that the formal desiom,
theoretical research on the qualitative properisemmuch more complicated than for the ordinary edihtial
equations. Hence, the computer experiments areeaf gnportance. We presented some new and/oradizeci
form of built-in tools inMathematicafor such systems. The complete package contaimy mare functions to
help qualitative methods such as Poincaré mapsgepiaps, but they will be subjects of other papers.

The packages used in the paper are summarize@ iAghendix and are available on the web-site hipnv.-
model.u-szeged.hu.
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Appendix. Summary of the packages

The following packages have to be loaded:

— VectorFieldPlots®  Mathematicastandard package for vector fields

— Impulseplot.m Visualization of impulses, jumps
— Idesolve.m Solve systems with fixed impulse instants
— IdeRKsolve.m Solve general systems with a Rungettakmethod

IDESolve package for systems with fixed impulse instants

| DESol ve[ CDEr hs, var, tn, Inp,1Cist,{t,t0,t1}, opt]

It solves a system for several initial conditiorrséd orNDSol ve.
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ODESol ve[ ODEr hs, var, I dist,{t,t0,t1}, opt]

It solves an ODE for several initial conditions WNDSol ve.

IDERKSolve package for general impulses

| DERKSol ve[ CDEr hs, I npul se, var, I Cist,{t,t0,t1,dt}]

It solves general and autonomous systems basedRange-Kutta method implemented in [16].

ImpulsePlot package to visualize impulses

Fi xedl npul seFieldPlot[lmp,tn, {t,t1,t2}, {x, x0,x1, dx}, opt]
Plots scalat (tj, x) impulse field in the systef, x} fortjetn, tl1<t <t2.

Ani mat el npul se[ I mp, tn, {t,t1,t2},{x, x0, x1}, opt]
A 2D animation (table) of the impulse mappings, x) byt etn, t1<t < t2.

St ackl mpul se[ I mp, t n, NN, {x, x0, x1}, opt]
Stack in 3D {t, %, y}) the impulse mappindst;, X) fort; etn, t1<t; < t2.

Doubl eFiel dPl ot [{fldl_,fld2_},{x_,x0_,x1_},{y_,y0_,y1 }, opt__ ]
Plots two vector fields, the first one is with aptiScal eFact or - >None.

Cont our Fi el dPI ot 200 sur f, f1d, {x, x0, x1},{y, y0, y1},
{ Cont our Opt, Fi el dOpt, G aphi csOpt }]

Plots vectors of the fielfil d starting out of the contour lireur f == 0.

Fi xedl npul seFi el dPlot3D[ I np, tn, {t,t1,t2},{x, x0, x1, dx},
{y,y0,y1,dy}, opt]

Plots a planal(tj, x, y) impulse field in the systeft, x, y} for t; e tn, t1< t; < t2.
JunpPlot[SS, I'I,{t, tO, t1},{x, x0, x1}, opt]

Visualizes the general scalar impulse mapping. direeSS == 0 and its image transformed by the impuldeare plotted in
the systentit, x}.

JurmpPl ot 3D[ SS, |1, {t, t0,t1}, {x, x0, x1}, {y, y0, y1}, opt]
Az SS=0 and its image transformed by the impulseare plotted in the systeft) x, y}.

Visualizes the general 2D impulse mapping. Theas@$S = 0 and its image transformed by the impulseare plotted in the
system(t, x, y}.

Aut onormousJunpPl ot 2D SS, | |, {x, x0, x1},{y, y0, y1}, opt]

The mapping of the impulséd on the curveSS = 0 are plotted in the systefr, y}.
Aut onomousJunpPl ot 3D[ SS, | |, {x, x0, x1},{y, y0, y1}, opt]

The mapping of the impulséd$ on the surfaceSS = 0 are plotted in the systefr, v, z}.

Cont our Li nePl ot 3D[ f, {t,t0, t1}{x, x0, x1},{y, y0, y1}, opt]

Special version of ParametricPlot3D to plots fiig x, y) contour lines irR® for t = const. (use Mesh option to set them) as well as the
contour surfaces with opacity (use option Contours)



