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In recent algebra investigations, the maximum number of islands on some grid turned out to appear as interesting com-
binatorial problem. The aim of this paper is to overview the history and the results in this topic. The first result, the
formula of Gábor Czédli appeared in [2], his proof was based on lattice theory. The investigation went on two different
directions, nowadays both are living research areas.
1. Lattice theory direction: After discovering the relationship between the maximum number of rectangular islands
and the weak bases of finite distributive lattices, new investigations and new results appeared within lattice theory.
2. Elementary direction: After discovering two elementary proof techniques in [1], several new questions and answers
have been born, some of which can be asked and answered even byhigh-school level knowledge.
We are convinced that these theoretical investigations will interact each other in the future, providing further results and
applications as well. There are already many easily understandable open problems in this topic, giving challenge to the
researching mathematicians (as well as to the students). Wewould like to introduce the topic the reader, in order to study
it further by choosing some paper from the References.

1. Introduction

In principle, we all know what islands are, see also Figure 1 and Figure 15. However, in nowadays life, digitaliza-
tion plays role everywhere. So, we will consider the problemof islands on some grid. If we change the conditions,
we obtain several interesting combinatorial problems.

Figure 1.
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2. The definition of an island

First, we need a grid. Its cells constitute the so-calledboard. The cells haveneighbours. Of course, we have to
define exactly, which cells are considered neighbours. For example, on Figure 2, the neighbours of the blue cells
are yellow.

Figure 2.

We putreal numbers into the cells. These are the so-calledheights. We fix a shape, e.g. rectangle or triangle. We
call this rectangle/triangle anisland if its cells have greater heights then the heights in the neighboring cells. In
Figure 3, one can see a rectangular island on the square grid with water level 4.

The maximum number of islands is itself an interesting question, furthermore in [6] there is a necessary and suffi-
cient condition for a code to be instantaneous (prefix-free), and this condition uses the notion of a one-dimensional
island.

Figure 3.

In Figure 4, one can see a triangular island on the triangular grid with water level 4.

Figure 4.

In other words, we call a rectangle/triangle anisland, if for the cell t, if we denote its height byat, then for each
cell t̂ neighbouring with a cell of the rectange/triangle T, the inequalitya

t̂
< min{at : t ∈ T } holds.

Of course, sometimes the shape above the water level is not a rectangle/triangle, but counting these islands turned
out to be much more interesting mathematical problem.
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3. Let’s count the islands!

Consider the following heights in Figure 5. How many rectangular islands do we have for all water levels? (For
short: Hos many rectangular islands do we have?)

Figure 5.

If the water level is 0.5, then we have one rectangular island, see Figure 6.

Figure 6.

If the water level is 1.5, then we have two rectangular island, see Figure 7.

Figure 7.

If the water level is 2.5, then we have the following two rectangular islands:
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Figure 8.

If we increase the water level above 3, then everything is under the water, i.e. we do not have any island. Alto-
gether, for these heights, we have1 + 2 + 2 = 5 rectangular islands.

Can we create more rectangular islands on the same grid (withdifferent heights)?

Yes! With the following heights, we have1 + 2 + 4 + 2 = 9 rectangular islands, see Figure 9.

Figure 9.

However, making more rectangular islands isimpossible !!!

It is the result of Gábor Czédli in [2] that the maximum number of rectangular islands on the square grid is

f(m, n) =
[mn + m + n − 1

2

]

.

In [1] it is proved that this formula is true not only with the neigborhood relation defined by Figure 2, but also with
four neugbours (symmetrically).
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4. How to prove the right conjecture about the maximum
number of islands?

We prove the above formula of Gábor Czédli [2] for rectangular islands, however the methods are applicable for
further cases as well.

4.1. We have at least this number of rectangular islands (low er estimate, lower
bound)

We prove that the maximum number of rectangular islands is atleastf(m, n) =
[

mn+m+n−1
2

]

in such a way that
we show this number of rectangular islands.

We prove by induction on the number of cells thatf(m, n) ≥
[

mn+m+n−1
2

]

.

If m = 1, then
[

n+1+n−1
2

]

= n; if we put1, 2, 3, . . . , n into the cells, in this order, then we will haven rectangular
islands.

If n = 1, then the same argument shows that we are able to createm rectangular islands.

If m = n = 2, then consider Figure 10, the number of rectangular islandsis 3, as required :

Figure 10.

Let m, n > 2.

We put maximally many islands into the rectangles of sizes(m − 2) × n, and1 × n. Between these rectangles,
we put one row of cells with heights smaller then the minimum of the heights in the two rectangles, furthermore
we put even smaller heights outside of our big rectangle. Followingly, we apply the induction hypothesis, i.e. the
inequation for smaller rectangles:

f(m, n) ≥ f(m − 2, n) + f(1, n) + 1 ≥
[ (m−2)n+(m−2)+n−1

2

]

+
[

n+1+n−1
2

]

+ 1 =

=
[ (m−2)n+(m−2)+n−1+2n

2

]

+ 1 =
[

mn+m+n−1
2

]

.

4.2. We cannot create more islands (upper estimate, upper bo und)

4.2.1. A method: lattice method

The original method, which produced the result first, was based on lattice theory, using the result of [4] that any
two weak bases of a finite distributive lattice have the same number of elements. This proof can be read in [2], and
provided several research directions in lattice theory, e.g. [3], [5], [7]. Some time later, two other proving methods
appeared in [1]. In this paper we present only these two proofs (method B and method C, as follows).
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4.2.2. B method: induction

If m = n = 1, then the statement is obviously true. Letm > 1 or n > 1. The induction hypothesis: ifu < m of
v < n, then for the rectangleR of sizeu × v, f(R) = f(u, v) ≤ 1

2 (u + 1)(v + 1) − 1.

Let I∗ denote such system of rectangular islands that contains maximally many rectangular islands. Denote by
maxI∗ the set of all maximal rectangular islands forI∗, i.e. those set of rectangular islands that have only one
bigger rectangular island. For rectangle of sizeu × v the number of grid points is‖R‖ = (u + 1)(v + 1). Now

f(m, n) = 1 +
∑

R∈maxI∗
f(R) ≤ 1 +

∑

R∈maxI∗

(

1
2‖R‖ − 1

)

=

= 1 − |max I∗| + 1
2

∑

R∈maxI∗
‖R‖ ≤ 1 − |max I∗| + 1

2 (m + 1)(n + 1).

so we obtained

f(m, n) ≤ 1 − |maxI∗| + 1
2 (m + 1)(n + 1).

If we have at least two maximal rectangular islands, then theproof is ready.

If we have only one maximal rectangular island, then one of the following inequalities are true:

f(m, n) ≤ 1 − |maxI∗| + 1
2m(n + 1) = 1 − 1 + 1

2m(n + 1) ≤ 1
2 (m + 1)(n + 1) − 1.

f(m, n) ≤ 1 − |maxI∗| + 1
2 (m + 1)n = 1 − 1 + 1

2 (m + 1)n ≤ 1
2 (m + 1)(n + 1) − 1.

If we have no maximal rectangular island, then we have only one rectangular island, so the proof is also ready.

4.2.3. C method: tree-graph method

Our rectangular islands constitute tree graph by inclusion, see Figure 11 and 12.

Figure 11.

First, we need a Lemma.

Lemma
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Let T be a rooted tree such that any non-leaf node has at least2 sons. Letℓ be the number of leaves inT . Then
|V | ≤ 2ℓ − 1.

Proof

Let us direct the tree-graph from its root to the direction ofits leaves. Then for the in-degrees and out-degrees the
following equation holds:

∑

D+ =
∑

D−.

Now
∑

D+ = |V | − 1

because each nod has father except for the root. Moreover:

∑

D− ≥ 2(|V | − ℓ),

because all non-leaf nod has at least two sons. So

∑

D+ = |V | − 1 =
∑

D− = 2(|V | − 1),

i.e. we obtained

2ℓ − 1 ≥ |V |,

the proof of Lemma is ready.

As we mentioned, our rectangular islands constitute tree-graphs by inclusion. For having at least binary tree-graph
in all cases (condition of Lemma), we introduce the so-called ”dummy island” in case the island shrinks when the
water level increases, e.g. see Figure 11-12, Figure 1, [1] and [18] for more details. (In Figure 15, when water
level increases, two islands appear above the big island, sothere is no need for dummy island. )

Figure 12.
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We denote bys the number of the minimal rectangular islands, byd the number of dummy islands. By Figure 11
and 12, each minimal rectangular island covers at least fourgrid-points, each dummy island covers at least two
grid-points.

This way we have covered not more than all the grid-points of the square grid, i. e.:

4s + 2d ≤ (n + 1)(m + 1).

The number of leaves ofT (I) is ℓ = s + d. Hence by Lemma the number of islands is

|V | − d ≤ (2ℓ − 1) − d = 2s + d − 1 ≤
1

2
(n + 1)(m + 1) − 1.

.

5. Triangular islands

Denote bytr(n) the maximum number of triangular islands in the equilateraltriangle of sidelengthn. The follow-
ing lower and upper bounds are proved in [9]:

n2 + 3n

5
≤ tr(n) ≤

3n2 + 9n + 2

14
.

Figure 13.

Hovewer, up to now, nobody succeeded to obtain exact formulafor the maximum number of triangular islands on
triangular grid.

6. Square islands

It is proved in [10] that for the square grid of size(m − 1) × (n − 1) the maximum number of square islands
sq(m, n):

1

3
(mn − 2m − 2n) ≤ sq(m, n) ≤

1

3
(mn − 1).
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Figure 14.

However, similarly to the triangular case, the lower and upper bounds are close, but exact formula for this square
case is also not known.

7. Exact results

The proofs of the following statements can be found in [1].

7.1. Peninsulas (semi islands)

Consider again rectangular islands on the square grid. Surprisingly, if we count the maximum number of such
islands that reaches at least one side of the board is:

p(m, n) = f(m, n) = [(mn + m + n − 1)/2].

7.2. Cylindric board, rectangular islands

Let us put square grid onto the surface of a cylinder. Denote by h1(m, n) the maxium number of rectangular
islands: Ifn ≥ 2, thenh1(m, n) = [ (m+1)n

2 ].

7.3. Cylindric board, cylindric and rectangular islands

On cylindric board, it is possible to create cylindric islands. Denote byh2(m, n) the maxium number of rectangular
or cylindric islands on the surface of a cylinder of heightm. Of course, in this case, the maximum number of
cilindric islands is more than in the previous case: Ifn ≥ 2, thenh2(m, n) = [ (m+1)n

2 ] + [ (m−1)
2 ].

7.4. Torus board, rectangular islands

Let us fold a torus from a rectangle of sizem×n. Denote byt(m, n) the maximum number or rectangular islands
on this board. Ifm, n ≥ 2, thent(m, n) = [mn

2 ].
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7.5. Islands in Boolean algebras

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebraBA = {0, 1}n. We
consider two cells neighbouring if their Hamming distance is 1. Our islands are Boolean algebras. We denote the
maximum number of islands inBA = {0, 1}n by b(n). Then,b(n) = 1 + 2n−1.

8. Further problems, partially investigated

If we put only finitely many heights into the square cells of a rectangle, we obtain a much more complicated
problem for rectangular islands, which is solved only for one dimension in [8]; for the maximum number of
rectangular islandsI(n, h) we have

I(n, h) ≥ n −
[ n

2h

]

if we haven cells in one row and the number of possible heights ish.

If we have maximally many rectangular islands in a square grid of sizem × n, then it is interesting to investigate
the number of possible levels, i.e. the heights of the digital hills, see [12].

For further interesting mathematical questions and answers in this topic we recommend [8], [11], [13], [14], [15],
[16][17] [18], [19] or [20].
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