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Trg Dositeja Obradovića 4, Novi Sad, Serbia
danijela.rajter-ciric@dmi.uns.ac.rs

http://www.dmi.uns.ac.rs

Probability theory, stochastic analysis and statistics are the topics one cannot avoid if wants to understand a lot of
phenomena in the nature and society. Therefore, not only mathematicians are interested in using the methods of these
three, but also the people who work in physics, chemistry, economy, pharmacy, agriculture, psychology, etc. If one takes,
for example, the stochastic analysis, then it is really a challenge to teach the complicated theory on a level which can be
understandable for someone who has some knowledge in mathematics (although mathematics is not her or his main field
of interest) but who, at the end, should use the methods of the stochastic analysis in the work. For instance, the theory
of the Markov processes, Poisson processes or Brownian motion are very important in many fields of applications but
the corresponding mathematical theory is not easy to explain. Here, in the first part of the chapter, we will introduce the
powerful methods of the probability theory and stochastic analysis. We will mostly concentrate to the probability theory
since it is the basics for the stochastic analysis and it is simpler and easier to understand. The second part of the chapter
is devoted to statistics. When it comes to teaching statistics, the situation is a little bit easier since one can teach statistics
in many different levels. No matter which level one chooses, the main goal is to teach the students to understand the
problem and to choose the statistical tool correctly in order to solve the problem.

1. Introduction

Any realistic model of a real-world phenomenon must take into account the possibility of randomness. Probability
is a part of our everyday-lives. A basic understanding of probability makes it possible to understand everything
from batting averages to the weather report or someone’s chances of being struck by lightning! Probability is an
important topic in mathematics because the probability of certain events happening - or not happening - can be
important to us in the real world.

On the other hand, statistics is a set of techniques and procedures that are used to analyze what is happening
in the world around us. Today we live in the Information Age and much of this information was determined
mathematically by using statistics. When used correctly, statistics tell us any trends in what happened in the past
and can also be very useful in predicting what may or may not happen in the future.
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2. Basics of the probability theory

Probability is simply the chance that something might happen. When we calculate the probability of an event we
look at chances of getting what we want versus all the possible things that can happen. The probability of an event
that you know for sure will happen is 100% or 1 while the probability of an event that will never happen is 0% or
just plain 0. What about other events that we’re not so sure about? The probability of these events can be given as
a percent or as an odds ratio. The probability of all the events that are possible must add up to 100%.

2.1. Sample space and events

Suppose that we will perform an experiment whose outcome is not predictable in advance and let us suppose that
the set of all possible outcomes is known. This set is called the sample space and here will be denoted by Ω. For
instance, if the experiment consists of rolling a die, the sample space is

Ω = {1, 2, 3, 4, 5, 6}

where the outcome i stands for the case when the number i appear on the die, i = 1, 2, 3, 4, 5, 6.

An event A is a subset of the sample space Ω. In the example with rolling a die, the event A = {2, 4, 6} is the
event that an even number appears on the roll. Specially, ∅ refers to the event consisting of no outcomes.

For any event A we define the complement of A as A = Ω \A. It will occur if and only if A does not occur. In the
example with rolling a die, if A is the event that an even number appears on the roll then A = {1, 3, 5}.

Since events are sets, all usual set operations are allowed such as, union, intersection, taking a subset,... For
instance, for any two events A and B, we may define the intersection of A and B, denoted by A ∩ B, or simply
by AB. It is, of course, the event which will occur if both A and B occur. If AB = ∅, then A and B are said to be
mutually exclusive. The union of events A and B, denoted by A ∪B, will occur if either A or B occurs. If A and
B are mutually exclusive events, that the union of A and B will be denoted by A+B. We also define unions and
intersections of more than two events in a similar manner.

2.2. Probabilities of events

Suppose that, for each event A of the sample space Ω, a number P (A) is defined and satisfies the following
conditions:

(i) P (Ω) = 1.

(ii) 0 ≤ P (A) ≤ 1.

(iii) For any family of mutually exclusive events A1, A2, . . . (that means that AiAj = ∅ when i ̸= j), the
following holds:

P

( ∞∑
i=1

Ai

)
=

∞∑
i=1

P (Ai).

The number P (A) is called the probability of the event A.

Here we will not discuss in detail the conditions under which the probability of an event exists (in order to do this,
one should introduce the notion of σ-algebra), we will simply suppose that we are dealing with events for which
it is possible to calculate their probabilities.

In the example with rolling a die, if we suppose that all six numbers are equally likely to appear, then we have

P ({1}) = P ({2}) = P ({3}) = P ({4}) = P ({5}) = P ({6}) = 1/6.
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From the property (iii) follows that the probability of getting an even number is

P ({2, 4, 6}) = P ({2}) + P ({4}) + P ({6} = 1/2.

In the sequel we give some of the properties of the probability P .

(1) P (∅) = 0.

Proof

Since Ω = Ω+ ∅+ ∅+ . . . , one has that P (Ω) = P (Ω) + P (∅) + P (∅) + . . . i.e. P (∅) = 0. �

(2) P

(
n∑

i=1

Ai

)
=

n∑
i=1

P (Ai), for any mutually exclusive events A1, . . . An.

(3) If A ⊆ B, then P (A) ≤ P (B).

Proof

If A ⊆ B, then B = A+AB. Therefore P (B) = P (A) + P (AB) implying that P (A) ≤ P (B). �

(4) P (A) = 1− P (A).

Proof

Since the events A and A are mutually exclusive such that A + A = Ω, we have (see property (2) from
above):

1 = P (Ω) = P (A+A) = P (A) + P (A),

i.e. P (A) = 1− P (A). �
One can easily prove the following

(5) P (A ∪B) = P (A) + P (B)− P (AB).

In case when A and B are mutually exclusive, one has P (AB) = ∅ and therefore

P (A ∪B) = P (A+B) = P (A) + P (B).

2.3. Conditional probability

Suppose that we toss two dice and that all 36 possible outcomes are equally likely to occur (all of them have
probability 1/36). Suppose that we observe that number three appears on the first die. Given this information,
what is the probability that the sum of the two dice equals seven?

We think in the following way: Knowing that the first die is three, there can be six possible outcomes of our
experiment, (3,1), (3,2), (3,3), (3,4), (3,5) and (3,6). Each of these outcomes originally had the same probability of
occurring and they should still have equal probabilities (our knowledge about the outcome on the first die does not
change this property). Therefore, given the first die is three, the (conditional) probabilities of all outcomes (3,1),
(3,2), (3,3), (3,4), (3,5) and (3,6) are the same, 1/6, while the (conditional) probabilities of other 30 points in the
sample space is 0. Only one of the outcomes (3,1), (3,2), (3,3), (3,4), (3,5) and (3,6) describes the property that
the sum of dice equals seven, this is the outcome (3,4) and it has the probability 1/6.

Denote by A the event that the sum of the dice is seven and by B the event the first die is three. Then the probability
that we have just obtained is called the conditional probability that A occurs given that B has occurred and it is
denoted by P (A|B).

A formula for P (A|B) which is general, i.e. valid for all events A and B, is obtained in the same manner: If
the event B occurs, than (since we want that A occurs) it is necessary that AB occurs. But, knowing that B
has occurred, B becomes our new sample space and hence the probability that AB occurs will be equal to the
probability that AB occurs relative to the probability of B. That is,

P (A|B) =
P (AB)

P (B)
.
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Note that P (A|B) is well defined only if P (B) > 0. If both P (A) > 0 and P (B) > 0, then from

P (A|B) =
P (AB)

P (B)
and P (B|A) = P (AB)

P (A)

one obtains
P (AB) = P (A|B) · P (B) = P (B|A) · P (A).

Example 1 Elena can either take course in computers or in statistics. If she takes the computer course, the
probability that she will receive the best grade is 1/2, and if she takes the statistics course she will obtain the best
grade with probability 1/3. Elena will decide which to choose by flipping a fair coin. What is the probability that
Elena will get the best grade in statistics?

Solution: If we let B be the event that Elena takes the statistics and denote by A the event that she receives the
best grade in whatever course she takes, then the desired probability is P (AB) and it calculated as

P (AB) = P (B)P (A|B) =
1

2
· 1
3
=

1

6
.

The previous formula can be generalized (by induction) to

P (A1A2 . . . An) = P (A1) · P (A2|A1) · P (A3|A1A2) · · ·P (An|A1A2 · · ·An−1). (1)

2.4. Independent events

Intuitively, two events A and B are independent if the realization of either of this two has no impact on the
probability that the other one occurs:

P (A|B) = P (A) and P (B|A) = P (B).

Based on this, one obtains the formal definition: Two events A and B are independent if

P (AB) = P (A) · P (B).

One can extend the definition of independence to more than two events. The events A1, A2, . . . , An are said to be
(mutually) independent if elements of any subset Ai1 , Ai2 , . . . , Aik , k ≤ n, of those events satisfy

P (Ai1Ai2 . . . Aik) = P (Ai1)P (Ai2) . . . P (Aik).

If the events A1, A2, . . . , An in relation (1) are independent, then

P (A1A2 . . . An) = P (A1) · P (A2) · · ·P (An).

Example 2 Suppose we toss two fair coins. What is the probability that on both coins heads appear?

Solution: To solve the problem, denote by A1 and A2 the events that head appears on the first and the second coin,
respectively. Than, the desired probability is P (A2A2) and, since A1 and A2 are independent, can be calculated
as

P (A1A2) = P (A1)P (A2) =
1

2
· 1
2
=

1

4
.

2.5. Bayes’ formula

Let A and B be events. Then
A = AΩ = A(B +B) = AB +AB,

where Ω is the sample space.



Probability and statistical models appearing in teaching mathematics to science teachers and university students 5

The previous formula states that if a point is in A, then it is either in both A and B or in A but not in B. Then we
have

P (A) = P (AB) + P (AB) = P (B)P (A|B) + P (B)P (A|B).

Now we have

P (B|A) = P (BA)

P (A)
=

P (B)P (A|B)

P (A)
=

P (B)P (A|B)

P (B)P (A|B) + P (B)P (A|B)
.

The previous formulas can be generalized: Suppose that H1,H2, . . . ,Hn are mutually exclusive events satisfying
n∑

i=1

Hi = Ω and P (Hi) > 0, i = 1, . . . , n. (In other words, exactly one of the events H1,H2, . . . ,Hn will occur.)

Consider an event A such that P (A) > 0. Knowing that A = AH1 + · · ·+AHn one obtains

P (A) =
n∑

i=1

P (AHi) =
n∑

i=1

P (Hi)P (A|Hi),

and

P (Hi|A) =
P (Hi)P (A|Hi)∑n
i=1 P (Hi)P (A|Hi)

, i = 1, . . . , n.

The last equation is known as Bayes’ formula.

Example 3 Consider two urns. The first urn contains two white and seven black balls and the second one contains
five white and six black balls. We select the urn by chance and then draw a ball from the urn. What is the
probability that, if a white ball is drawn, it is taken from the first urn?

Solution: Let W be the event that a white ball is drawn. Let H1 be the event that the first urn is selected and let
H2 be the event that the second urn is selected. The desired probability P (H1|W ) can be calculated as

P (H1|W ) =
P (H1W )

P (W )
=

P (H1)P (W |H1)

P (W )
=

P (H1)P (W |H1)

P (H1)P (W |H1) + P (H2)P (W |H2)
.

By assumption, we select the urn by chance and therefore P (H1) = P (H2) = 1/2. The probability that a white
ball is drawn if the first urn is selected is P (W |H1) = 2/9 since there are two white balls out of nine balls in the
first urn. Similarly, P (W |H2) = 5/11. Now, it is easy to calculate P (H1|W ) = 22/67.

3. Random variables

It is very often that in performing some experiment we are more interested in some functions of outcome then in
outcome itself. For instance, in tossing dice we are interested in the sum of two dice and rarely in the actual out-
come. These real valued functions defined on the sample space are random variables. We may assign probabilities
to certain sets of possible values of the random variable since those values are determined by the outcomes of the
experiment.

For instance, suppose that the experiment consists of tossing two fair coins and denote by H the outcome when
head appears on whatever coins and by T the outcome when tail appears. If X denote the number of heads
appearing, then X is a random variable taking one of the values 0,1,2 with probabilities

P{X = 0} = P{(T, T )} = 1/4,

P{X = 1} = P{(H,T )}+ P{(T,H)} = 2/4,

P{X = 2} = P{(H,H)} = 1/4.

Of course, P{X = 0}+ P{X = 1}+ P{X = 2} = 1.

Note that the random variable X given above has finite number of values. In case when random variable takes
finite or countable number of possible values it is called discrete.
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The distribution function FX of the random variable X is defined for any real number b, −∞ < b < ∞, by

FX(b) = P{X < b}.

It is nondecreasing and continuous from left function, such that

lim
b→−∞

FX(b) = FX(−∞) = 0, lim
b→∞

FX(b) = FX(∞) = 1.

All probability questions about X can be answered in terms of distribution function. For instance,

P (a ≤ X < b) = FX(b)− FX(a), for all a, b ∈ R, a < b.

3.1. Discrete random variables

A random variable that can take at most a countable number of possible values is said to be discrete. For a discrete
random variable X define

p(b) = P{X = b}

and it is called the probability mass function of X . If X must take one of the values x1, x2,. . . , then p(xi) > 0,
i = 1, 2, . . . and p(x) = 0, for all other values of x. This can be written as

X :

(
x1 x2 . . . xn . . .

p(x1) p(x2) . . . p(xn) . . .

)
.

It is obvious that
∞∑
i=1

p(xi) = 1

since X must take one of the values xi. The distribution function F of X is

FX(b) =
∑

all xi<b

p(xi).

Let X be a discrete random variable with probability mass function

p(0) =
1

2
, p(1) =

3

8
, p(2) =

1

8
.

Then, the distribution function of X is given by

FX(b) =


0, b ≤ 0
1/2, 0 < b ≤ 1
7/8, 1 < b ≤ 2
1, b > 2

.

3.1.1. The binomial random variable

Suppose that experiment consists of n independent trials during which an event A occurs with the probability p
(hence, it does not occur with probability q = 1 − p). If X represents the number of occurring of event A in the
n trials, then X is a binomial random variable with parameters n and p (we write X : B(n; p)), where n ∈ N and
0 < p < 1. Then

X :

(
0 1 . . . k . . . n

p(0) p(1) . . . p(k) . . . p(n)

)
,

where

p(i) =

(
n
i

)
piqn−i, i = 0, 1, . . . , n.
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Note that,
n∑

i=0

p(i) =

n∑
i=0

(
n
i

)
piqn−i = (p+ (1− p))n = 1.

Example 4 Suppose that four fair coins are flipped. If the outcomes are assume to be independent, what is the
probability that three heads and one tail are obtained?

Solution: In order to find the solution, we denote by X the number of heads that appear. In that case, X is a
binomial random variable with parameters n = 4 and p = 1/2. Hence,

P{X = 3} = p(3) =

(
4
3

)(
1

2

)3(
1

2

)1

=
3

8
.

Example 5 It is known that any item produced by a certain machine will be defective with probability 0.1, inde-
pendently of any other item. What is the probability that in a sample of three items, at most one will be defective?

Solution: If X is the number of defective items in the sample, then X is a binomial random variable with param-
eters n = 3 and p = 0.1. Therefore,

P{X = 0}+ P{X = 1} =

(
3
0

)
(0.1)0(0.9)3 +

(
3
1

)
(0.1)1(0.9)2 = 0.972.

3.1.2. The Poisson Random variable

The random variable X is said to be Poisson random variable with parameter λ > 0 (we write X : P(λ)), if

X :

(
0 1 . . . n . . .

p(0) p(1) . . . p(n) . . .

)
,

where

p(i) =
λi

i!
e−λ, i = 0, 1, . . . , n.

Then,
∞∑
i=0

p(i) = e−λ
∞∑
i=0

λi

i!
= e−λeλ = 1.

One of important properties of Poisson random variable is that it can be used to approximate a binomial random
variable when the binomial parameter n is large and p is small. Namely, if X : B(n; p) and n → ∞ and p → 0,
but np → const, then

p(k) → λk

k!
e−λ, k = 0, 1, . . . ,

where p(k) is probability mass function for binomial random variable.

Example 6 Suppose that the number of typographical errors on a single page of some book has a Poisson distri-
bution with parameter λ = 1. What is the probability that there is at least one error on a certain page?

Solution: P{X ≥ 1} = 1− P{X = 0} = 1− e−1 ≈ 0.633.

Example 7 If the number of accidents occurring on a highway each day is a Poisson random variable with param-
eter λ = 3, what is the probability that no accident occur on a certain day?

Solution: P{X = 0} = e−3 ≈ 0.05.
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3.1.3. The geometric random variable

Suppose that experiment consists of n independent trials during which an event A occurs with the probability p. If
X is the number of trials until the first appearance of A, then X is said to be the geometric random variable with
parameter 0 < p < 1 (we write X : G(p)), and

X :

(
1 2 . . . n . . .

p(1) p(2) . . . p(n) . . .

)
,

where
p(i) = p qi−1, i = 1, 2, . . . , q = 1− p.

Again, we have
∞∑
i=1

p(i) = p

∞∑
i=1

qi−1 = p

∞∑
i=0

qi = p
1

1− q
=

p

p
= 1.

Example 8 Luka goes target shooting and he hits the target with the probability 0.7. If he shoots until he misses
the target, what is the probability that he shoots exactly three times?

Solution: If X is the number of shooting, then X is a geometric random variable with p = 0.3. Then,

P{X = 3} = (0.7)2 · 0.3 = 0.147.

3.2. Continuous random variables

As mentioned above, continuous random variables have uncountable set of possible values. More precisely, X is
said to be continuous if there exists a nonnegative function φX : R 7→ R+, such that

P{X ∈ B} =

∫
B

φX(t) dt, for any set B of real numbers.

The function φX is called the probability density function of random variable X , or just the density function of X .

By choosing B = (−∞,∞) one conclude that φX must satisfy

1 = P{X ∈ (−∞,∞)} =

∫ ∞

−∞
φX(t) dt.

By choosing B = [a, b] one obtains

P{a < X < b} = P{X ∈ [a, b]} =

∫ b

a

φX(t) dt.

If a = b it follows that

P{X = a} =

∫ 0

0

φX(t) dt = 0.

By choosing B = (−∞, b), one obtains

FX(b) =

∫ b

−∞
φX(t) dt, for any b ∈ R,

where FX is the distribution function of random variable X . Differentiating both sides gives

d

db
FX(b) = φX(b).
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3.2.1. The uniform random variable

A continuous random variable X is said to be uniformly distributed over the interval (a, b), a, b ∈ R and a < b,
(we write X : U(a, b)), if its density function is

φX(x) =

{ 1

b− a
, x ∈ (a, b)

0, x /∈ (a, b)
.

The distribution function of X : U(a, b) is

FX(x) =


0, x ≤ a

x− a

b− a
, a < x ≤ b

1, x > b

.

For example, if X is the number randomly selected from the interval (a, b), then X : U(a, b).

Example 9 We select a number from the interval (0,10) by chance. What is the probability that it is less then 3?

Solution: If X is the number we select, then it is uniformly distributed over the interval (0,10). Therefore,

P{X < 3} =

∫ 3

0

dx

10
=

3

10
.

3.2.2. The exponential random variable

A continuous random variable is said to be exponentially distributed with parameter λ > 0, (we write X : E(λ)),
if its density function is

φX(x) =

{
λ e−λx, x > 0

0, x ≤ 0
.

The distribution function of X : E(λ) is

FX(x) =

{
0, x ≤ 0

1− e−λx, x > 0
.

Example 10 Suppose that the amount of the time (in minutes) one spends in a bank is exponentially distributed
with λ = 1/10. What is the probability that a customer will spend more than 15 minutes in the bank?

Solution: If X represents the amount of time that the customer spends in the bank, then the probability is just

P{X > 15} = e−15λ = e−3/2 ≈ 0.22.

3.2.3. The normal random variable

A continuous random variable is said to be normally distributed with parameters m ∈ R and σ2 > 0, (we write
X : N (m;σ2), if its density function is

φX(x) =
1

σ
√
2π

e−
(x−m)2

2σ2 , x ∈ R.

The distribution function of X : N (m;σ2) is

FX(x) =
1

σ
√
2π

∫ x

−∞
e−

(t−m)2

2σ2 dt, x ∈ R.
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The important property is that, if X is normally distributed with parameters m and σ2, then Y = aX + b is also
normally distributed but with parameters am+ b and a2σ2 > 0.

In case when m = 0 and σ2 = 1 one obtains so-call standard normal distribution, N (0; 1) which has many
applications, (for instance, in statistics).

4. Jointly distributed random variables

4.1. Joint distribution function

We are often interested in probability statements concerning two or more random variables. To deal with such
probabilities, we define, for any two random variables X and Y , the joint cumulative probability distribution
function of X and Y by

FXY (a, b) = P{X < a, Y < b}, −∞ < a, b < ∞.

The distribution of X is obtained from the joint distribution of X and Y as follows:

FX(a) = P{X < a} = P{x < a, Y < ∞} = FXY (a,∞).

Similarly, FY (b) = FXY (∞, b).

4.2. Independent random variables

The random variables X and Y are said to be independent if, for all a, b,

P{x < a, Y < b} = P{x < a} · P{Y < b}.

In other word, X and Y are independent if, for all a and b, the events {X < a} and {X < b} are independent. In
the terms of distribution functions, X and Y are independent if

FXY (a, b) = FX(a) · FY (b), for all a, b.

5. Expectation and variance

Sometimes, it is very convenient to know some numerical characteristics of random variables. We study some of
them in the sections that follow.

5.1. Definitions and basic properties

In probability theory, the expectation (or expected value, or mathematical expectation, or mean, or the first mo-
ment) of a random variable is the weighted average of all possible values that this random variable can take on.
The expectation of the random variable X , E(X), is number defined by

• E(X) =
∑
i

xip(xi), in case X is discrete with the probability mass function P{X = xi} = p(xi);

• E(X) =

∫ ∞

−∞
x φX(x) dx, in case X is continuous with the density function φX(x),

assuming that the sum and the integral above are absolutely convergent.

Some properties of expectation are
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1. If c is a constant, then E(c) = c and E(cX) = cE(X).

2. Let Y be a function of random variable X , that is Y = g(X). Then

• E(Y ) = E(g(X)) =
∑
i

g(xi)p(xi), in case X is discrete with the probability mass function p(xi).

• E(Y ) = E(g(X)) =

∫ ∞

−∞
g(x) φX(x) dx, in case X is continuous with the probability density

function φX(x),

assuming that the sum and the integral above are absolutely convergent.

3. For any X and Y , E(X + Y ) = E(X) + E(Y ), assuming that E(X) and E(Y ) exist.

4. If X and Y are independent, E(XY ) = E(X)E(Y ), assuming that E(X) and E(Y ) exist.

5. E(X − E(X)) = 0, assuming that E(X) exists.

The variance of the random variable X is defined as

D(X) = E
(
(X − E(X))

2
)
.

One easily calculates

D(X) = E
(
(X − E(X))

2
)
= E

((
X2 − 2E(X)X + E2(X)

))
= E(X2)− 2E(X)E(X) + E2(X) = E(X2)− E2(X). �

From the definition of the variance it is obvious that D(X) ≥ 0. One can easily show that D(X) = 0 if and only
if X is a constant and that D(cX) = c2D(X) and D(X+ c) = D(X), c = const. If X and Y are independent,
then D(X + Y ) = D(X) +D(Y ).

Since the variance is always nonnegative, one can define σ(X) =
√

D(X) and it is called the standard deviation
of the random variable X .

For any random variable X we can define

X∗ =
X − E(X)√

D(X)
.

One can easily show
E(X∗) = 0 and D(X∗) = 1.

5.2. Expectation and variance of some random variables

5.2.1. Binomial distribution B(n; p)

Random variable X : B(n; p) we write as

X = X1 + · · ·+Xn

where X1, . . . , Xn are independent random variables:

Xi :

(
0 1
p q

)
, i = 1, . . . , n,

where q = 1− p. It is obvious that

E(Xi) = p and D(Xi) = pq, for all i = 1, . . . , n.

Then

E(X) = E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn) = np,

D(X) = D(X1 + · · ·+Xn) = D(X1) + · · ·+D(Xn) = npq.
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5.2.2. Poisson distribution P(λ)

The expectation of the random variable X : P(λ) is

E(X) =

∞∑
i=0

i
λi

i!
e−λ = λe−λ

∞∑
i=1

λi−1

(i− 1)!
= λ,

and the variance is

D(X) = E(X2)− E2(X) =
∞∑
i=0

i2
λi

i!
e−λ − λ2

=
∞∑
i=1

(i− 1 + 1)
λi

(i− 1)!
e−λ − λ2

= e−λ

(
λ2

∞∑
i=2

λi−2

(i− 2)!
+ λ

∞∑
i=1

λi−1

(i− 1)!

)
− λ2

= e−λ(λ2eλ + λeλ)− λ2 = λ.

5.2.3. Uniform distribution U(a, b)

The expectation of the random variable X : U(a, b) is

E(X) =

∫ b

a

x
1

b− a
dx =

a+ b

2
,

and the variance is

D(X) = E(X2)− E2(X)

=

∫ b

a

x2 1

b− a
dx−

(
a+ b

2

)2

=
(b− a)2

12
.

5.2.4. Exponential distribution E(λ)

The expectation of the random variable X : E(λ) is

E(X) =

∫ ∞

0

x λ e−λx dx =
1

λ2

∫ ∞

0

te−t dt =
1

λ
,

where we have used the change of variables ax = t and the gamma function∫ ∞

0

tn−1e−t dt = Γ(n) = (n− 1)!.

The variance of the random variable X : E(λ) is

D(X) = E(X2)− E2(X)

=

∫ ∞

0

x2 λ e−λx dx− 1

λ2

=
1

λ2
Γ(3)− 1

λ2
=

1

λ2
.
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6. Stochastic processes

A stochastic process {X(t), t ∈ T} is a collection of random variables. That means that, for each t ∈ T , X(t) is
a random variable. The index t is often interpreted as time. Therefore, we refer to X(t) as the state of the process
at time t. For example, X(t) might be the number of customers in the supermarket at time t.

The set T is called the index set of the process. If T is countable set then the stochastic process is said to be
a discrete-time process. On the other hand, if T is an interval of the real line, the stochastic process is said to
be a continuous-time process. Usually, by {Xn, n = 0, 1, . . . } we denote a discrete-time process indexed by
nonnegative integers, while {X(t), t ≥ 0} usually denotes a continuous-time stochastic process indexed by
nonnegative real numbers.

The state space of a stochastic process is the set of all possible values that the random variables X(t) can assume.
Thus, a stochastic process is a family of random variables that describes the evolution through the time of some
(physical) process.

6.1. Poisson process

A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) is the total number of events that
occur by time t.

The counting process {N(t), t ≥ 0} is said to be a Poisson process having rate λ, λ > 0, if

(i) N(0)=0.

(ii) The process has independent increments (the number of events that occur in disjoint time intervals are
independent).

(iii) The number of events in any interval of length t is Poisson distributed with mean λt. That is, for all s, t ≥ 0,

P{N(t+ s)−N(s) = n} =
(λt)n

n!
e−λt, n = 0, 1, 2, . . .

Consider a Poisson process and denote the time of the first event by T1. Further, for n > 1, let Tn denote the
elapsed time between the (n− 1)st and nth event.

The sequence {Tn, n = 1, 2, . . . } is called the sequence of interarrival times.

Tn, n = 1, 2, . . . are independent identically distributed exponential random variables having mean 1/λ.

The arrival (waiting) time of the nth event is Sn = T1 + · · ·+ Tn and it has the probability density function

φSn(t) = λe−λt (λt)
n−1

(n− 1)!
, t ≥ 0.

The random variable having the probability density function above is said to be Gamma distributed with parameters
n and λ.

Example 11 Suppose that people immigrate into a territory at a Poisson rate λ = 1 per day.

a) What is the expected time until the tenth immigrant arrives?

a) What is the probability that the elapsed time between the tenth and the eleventh arrival exceeds two days?

Solution:

a) E(S10) = 10/λ = 10 days.

a) P{T11 > 2} = e−2λ = e−2 ≈ 0.133.
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7. Introduction to Statistics

Statistics refers to a range of techniques and procedures for analyzing data, interpreting data, displaying data and
making decisions based on data. It includes descriptive statistics (the study of methods and tools for collecting
data, and mathematical models to describe and interpret data) and inferential statistics (the systems and techniques
for making probability-based decisions and accurate predictions based on incomplete (sample) data).

One important use of descriptive statistics is to summarize a collection of data in a clear and understandable
way. How might data collected with some purpose be summarized? There are two basic methods: numerical and
graphical. By using the numerical approach one might compute some statistics such as the mean and standard
deviation. These statistics convey information about the average or the spread of the data in comparison to the
average. Using the graphical approach one might create a stem and leaf display and a box plot. These plots
contain detailed information about the distribution of data. Graphical methods are better than numerical methods
for identifying patterns in the data. On the other hand, numerical approaches are more precise and objective.
Therefore, it is wise to use them both.

Inferential statistics are used to draw inferences about a population from a sample. There are two main methods
used in inferential statistics: estimation and hypothesis testing. In estimation, the sample is used to estimate a
parameter and a confidence interval about the estimate is constructed.

Introducing basic statistical notions we start with a population. A population consists of an entire set of objects,
observations, or scores that have something in common. For example, a population might be defined as all females
between the ages of 15 and 19 (the high school female population). A sample is a subset of a population. Since
it is usually impractical to test every member of a population, a sample from the population is typically the best
approach available.

7.1. Measures of central tendency

Measures of central tendency are measures of the location of the middle or the center of a distribution. The term
”central tendency” can refer to a wide variety of measures. The mean is the most commonly used measure of
central tendency. The following measures of central tendency are discussed in this text: mean, median and mode.

7.1.1. Arithmetic mean

The arithmetic mean is simply the arithmetic average of a group of numbers or data set. It is calculated by adding
up all of the values in a data set and dividing by the number of values in that data set: For example, the mean of
the set of data {1, 2, 3, 4, 5} is:

1 + 2 + 3 + 4 + 5

5
= 3.

In general, the formula for calculating the arithmetic mean of population is

m =

∑N
i=1 xi

N
,

where m is the population mean, xi is the i-th score in the population and N is the number of scores (population
size). If the scores are from a sample, then the symbol x̄n refers to the mean and n refers to the sample size. The
formula for x̄n is the same as the formula for m:

x̄n =

∑n
i=1 xi

n
.

7.1.2. Median

The median is the ”middle value” in a set. That is, the median is the number in the center of a data set that has
been ordered sequentially. Half the scores are above the median and half are below the median. The median is
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less sensitive to extreme scores than the mean and this makes it a better measure than the mean for highly skewed
distributions.

For example, let’s look at the data set: {9, 14, 87, 3, 70, 99, 1}. What is its median?

First, we sort our data set sequentially: {1, 3, 9, 14, 70, 87, 99}. Next, we determine the total number of points in
our data set (in this case, 7.) Finally, we determine the central position of or data set (in this case, the 4th position),
and the number in the central position is our median. Thus, in our set {1, 3, 9, 14, 70, 87, 99}, number 14 is the
median.

An easy way to determine the central position or positions for any ordered set is to take the total number of points,
add 1, and then divide by 2. If the number we get is a whole number, then that is the central position. If the number
we get is a fraction, we take the two whole numbers on either side.

Because our data set had an odd number of points, determining the central position was easy - it will have the
same number of points before it as after it. But what if our data set has an even number of points?

Let’s take the same data set, but add a new number to it: {1, 3, 9, 14, 67, 70, 99, 100}. What is the median of this
set?

When you have an even number of points, you must determine the two central positions of the data set. So for a
set of 8 numbers, we get

8 + 1

2
=

9

2
= 4, 5,

which has 4 and 5 on either side.

Looking at our data set, we see that the 4th and 5th numbers are 14 and 70. Now, we take the mean of these two
to determine the median:

14 + 70

2
=

84

2
= 42.

7.1.3. Mode

The mode is the most common or ”most frequent” value in a set. In the set {1, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 9}, the
mode would be 4 as it occurs a total of three times in the set, more frequently than any other value in the set. A
data set can have more than one mode: for example, in the set {1, 2, 2, 3, 3}, both 2 and 3 are modes. If all points
in a data set occur with equal frequency, it is equally accurate to describe the data set as having many modes or no
mode.

The advantage of the mode as a measure of central tendency is that its meaning is obvious. Further, it is the only
measure of central tendency that can be used with so-called nominal data. A set of data is said to be nominal if
one can assign to its values/observations a code in the form of a number where the numbers are simply labels. One
can count but not order or measure nominal data.

The mode is greatly subject to sample fluctuations and is therefore not recommended to be used as the only
measure of central tendency. A further disadvantage of the mode is that many distributions have more than one
mode. These distributions are called ”multi modal.”

The relationship of the mean, median and mode to each other can provide some information about the relative
shape of the data distribution. If the mean, median, and mode are approximately equal to each other, the distribu-
tion can be assumed to be approximately symmetrical. If

mean > median > mode,

the distribution will be skewed to the right or positively skewed. If

mean < median < mode,

the distribution will be skewed to the left or negatively skewed. In a normal distribution, the mean, median and
mode are identical.
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7.2. Variance and standard deviation

The variance and the standard deviation are measures of how spread out a distribution is. In other words, they are
measures of variability.

The variance is computed as the average squared deviation of each number from its mean. For example, for the
numbers 1, 2, 3, 4, and 5, the mean is 3 and the variance is:

σ2 =
(1− 3)2 + (2− 3)2 + (3− 3)2 + (4− 3)2 + (5− 3)2

5
= 2.

The formula for the variance in a population is

σ2 =
1

N

N∑
i=1

(xi −m)2,

where m is the mean of the population, xi is the i-th score in the population and N is the population size.

When the variance is computed in a sample, then the symbol s̄2n refers to the variance and n refers to the sample
size. The formula for s̄2n is the same as the formula for σ2:

s̄2n =
1

n

n∑
i=1

(xi − x̄n)
2,

where x̄n is the mean of the sample.

One can show that s̄2n is a biased estimate of σ2. (A statistic is biased if, in the long run, it consistently over or
underestimates the parameter it is estimating i.e. if its expected value is not equal to the parameter.)

The most common formula for computing variance in a sample is:

ŝ2n =
1

n− 1

n∑
i=1

(xi − x̄n)
2,

which gives an unbiased estimate of σ2. Since samples are usually used to estimate parameters, ŝ2n is the most
commonly used estimation of variance. Calculating the variance is an important part of many statistical applica-
tions and analysis.

Standard deviation is simply the square root of the variance. It is an extremely useful measure of spread. An
important attribute of the standard deviation as a measure of spread is that if the mean and standard deviation of a
normal distribution are known, it is possible to compute the percentile rank associated with any given score. In a
normal distribution, about 68% of the scores are within one standard deviation of the mean and about 95% of the
scores are within two standard deviations of the mean.

8. Estimating parameters

8.1. Method of moments

The k-th moment of the random variable X , if exists, is simply E(Xk).

The method of moments is a method of estimation of population parameters such as mean, variance, median,
etc. (which need not be moments), by equating sample moments with unobservable population moments and then
solving those equations for the quantities to be estimated.

Example 12 Let X be an exponentially distributed random variable, X : E(λ). Based on a sample having size n,
estimate the parameter λ by using the method of moments.
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Solution: Since X is E(λ)-distributed, we know that E(X) =
1

λ
. Since the first moment is

x̄n =
1

n

n∑
i=1

xi,

we take
λ̂ =

1
1
n

∑n
i=1 Xi

=
1

X̄n
,

for the estimation of the parameter λ.

8.2. Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a popular statistical method used for fitting a statistical model to data,
and providing estimates for the model’s parameters.

In general, for a fixed set of data and underlying probability model, the method of maximum likelihood selects
values of the model parameters that produce the distribution most likely to have resulted in the observed data (i.e.
the parameters that maximize the likelihood function). Maximum likelihood estimation gives a unified approach
to estimation, which is well-defined in the case of the normal distribution and many other problems. However,
in some complex problems, difficulties do occur: in such problems the maximum-likelihood estimators may be
unsuitable or may not even exist.

Let θ be an unknown parameter appearing in distribution of X . We want to estimate θ by using (MLE), based on
a sample having size n.

First, we construct the likelihood function L = L(x1, x2, . . . , xn, θ) in the following way:

• If X is a discrete random variable with the probability mass function

P{X = xi} = p(xi, θ),

then the likelihood function is

L = L(x1, x2, . . . , xn, θ) = p(x1, θ) p(x2, θ) · · · p(xn, θ).

• If X is a continuous random variable with the density function φ(x, θ), then the likelihood function is

L = L(x1, x2, . . . , xn, θ) = φ(x1, θ) φ(x2, θ) · · ·φ(xn, θ).

The estimation of θ is
θ̂MLE = max

θ
L = max

θ
L(x1, x2, . . . , xn, θ).

If L does not reach its maximum with respect to θ, then the estimation obtained by (MLE) does nor exist.

Since the likelihood function is a product, we seek its maximum by solving the equation

∂ lnL

∂θ
= 0,

instead of solving
∂L

∂θ
= 0,

if, of course, differentiation makes sense.

Since the logarithm function is monotone, function lnL reaches its maximum in the same points as L.

The function lnL is often called log-likelihood function.
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Example Let X is exponentially distributed with parameter λ. Based on a sample having size n estimate the
parameter λ by using (MLE).

Solution: Since X : E(λ), the likelihood function is

L(x1, x2, . . . , xn, λ) = λn exp

{
−λ

n∑
i=1

xi

}
,

and

lnL = n lnλ− λ

n∑
i=1

xi.

Therefore
∂ lnL

∂λ
=

n

λ
−

n∑
i=1

xi.

By solving the equation
n

λ
−

n∑
i=1

Xi = 0

we obtain that
λ̂MLE =

1
1
n

∑n
i=1 Xi

=
1

X̄n
,

is an estimation of parameter λ.

Note that we obtained the same estimation of the parameter λ as in case when we used the method of moments.

8.3. Confidence intervals

Let’s say that the population we are investigated is specified and it consists of all high school students. We are
interested in their knowledge in mathematics. of course, we can not test all students attending high school, so the
next step is to take a sample from the population. In our example, suppose that 10 students are drawn and each
student’s knowledge in mathematics is tested.

The way to estimate the mean of all high school students, m, is to compute the mean of the 10 students in the
sample. Indeed, the sample mean is an unbiased estimate of m. But it will certainly not be a perfect estimate.

For the estimate of m to be of value, one must have some idea of how precise it is. That is, how close to m is the
estimate likely to be?

An excellent way to specify the precision is to construct a so-called confidence interval. A confidence interval is
a range of values computed in such a way that it contains the estimated parameter a high probability. The 95%
confidence interval is constructed so that 95% of such intervals will contain the parameter. Similarly, 99% of 99%
confidence intervals contain the parameter. The wider the interval, the more confident you are that it contains the
parameter.

8.3.1. Confidence interval for m when standard deviation is known

Here we want to compute the confidence interval for the mean of a normally-distributed variable for which the
population standard deviation is known. of course, in practice, the standard deviation of population is rarely
known. Therefore, the next step would be to compute a confidence interval when the standard deviation has to be
estimated and this would be easier to do after considering this case.

To construct a confidence interval for m we need to know the sample mean x̄n, the value of z (which depends on
the level of confidence), the standard deviation σ and the sample size n. The confidence interval has x̄n for its
center and its formula is:

x̄n − z
σ√
n
≤ m ≤ x̄n + z

σ√
n
.
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Assume that our 10 high school students are tested in mathematics and their scores (out of 1000) are 320, 380,
400, 420, 500, 520, 600, 660, 720, and 780. We suppose that the standard deviation of mathematics test scores in
a high school system is known to be 100. We wish to compute a 95% confidence interval for the mean m from a
random sample of these 10 scores.

First, note that n = 10 and σ = 100 are known. One can easily compute x̄n = 530. It remains to determine the
value of z for the 95% confidence interval. It is the number of standard deviations one must go from the mean (in
both directions) to contain 0.95 of the scores. The value z = 1.96 can be found by using a so-called z table.

All the components of the confidence interval are now known and we can easily compute the 95% confidence
interval for m:

(530− 1.96
100√
10

, 530 + 1.96
100√
10

) = (468.02, 591.98).

If a larger sample size had been used, the range of scores would have been smaller.

The computation of the 99% confidence interval is exactly the same except that z = 2.58. The 99% confidence
interval is: (448.54, 611.46). As it must be, the 99% confidence interval is wider than the 95% confidence interval.

8.3.2. Confidence interval for m when standard deviation is estimated

It is very rare that a researcher wishing to estimate the mean of a population already knows its standard deviation.
Therefore, the construction of a confidence interval in most of cases involves the estimation of both m and σ.

Whenever the standard deviation is estimated, the t distribution rather than the normal distribution (z distribution)
should be used.

To construct a confidence interval for m when standard deviation is estimated, we need to know the sample mean
x̄n, the value of t (which, same as z, depends on the level of confidence), the standard deviation of a sample s̄n
and the sample size n. The confidence interval again has x̄n for its center and its formula is:

x̄n − t
ŝn√
n
≤ m ≤ x̄n + t

ŝn√
n
.

As in the case for the value of z which we can found in z table, the value of t can be determined by using a
so-called t table. It is actually the quantile of order (1+ γ)/2 of t distribution, where γ is the confidence level, for
example, γ = 0.95.

9. Hypothesis testing

A statistical hypothesis is an assumption about a population parameter. This assumption may or may not be true.
The best way to determine whether a statistical hypothesis is true would be to examine the entire population. Since
that is often impractical, researchers typically examine a random sample from the population. If sample data are
not consistent with the statistical hypothesis, the hypothesis is rejected.

There are two types of statistical hypotheses: null hypothesis and alternative hypothesis. The null hypothesis,
denoted by H0, is usually the hypothesis that sample observations result purely from chance. The alternative
hypothesis, denoted by H1, is the hypothesis that sample observations are influenced by some non-random cause.

Now, suppose that we want to test some hypothesis about a population parameter. We start with the null hypothesis.
Then, we make a sample from the population and collect data. The next step is to determine the viability of the null
hypothesis in light of the data. If the data are very different from what would be expected under the assumption
that the null hypothesis is true, then the null hypothesis is rejected. If the data are not greatly at variance with what
would be expected under the assumption that the null hypothesis is true, then the null hypothesis is not rejected.

The null hypothesis is often the reverse of what the experimenter actually believes; it is put forward to allow the
data to contradict it.
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9.1. Testing of m, H0(m = m0), when standard deviation is known

Let the population variable X be normally N (m;σ2)-distributed, where m is unknown parameter, and suppose
we know σ. Denote by X1, . . . Xn the sample and by x1, . . . , xn its realizations.

Suppose that m = m0.

We consider the deviation of the sample arithmetic mean with respect to m0 and calculate, by using the z table,
the probability

P (|X̄n −m0| ≥ |x̄n −m0|) = P

{∣∣∣∣X̄n −m0

σ

√
n

∣∣∣∣ ≥ ∣∣∣∣ x̄n −m0

σ

√
n

∣∣∣∣}
= 2

(
1− Φ

(
x̄n −m0

σ

√
n

))
= α∗.

If α∗ < α, where α is the significance level, we reject H0(m = m0), otherwise we do not reject it.

9.2. Testing of m, H0(m = m0), when standard deviation is estimated

Let the population variable X be normally N (m;σ2)-distributed, where both m and σ are unknown. As always,
denote by X1, . . . Xn the sample and by x1, . . . , xn its realizations.

Suppose that m = m0.

We start with
X̄n −m0

S̄n

√
n− 1,

which is tn−1-distributed. Then we calculate, by using the t table, the probability

α∗ = P

{∣∣∣∣X̄n −m0

S̄n

√
n− 1

∣∣∣∣ ≥ ∣∣∣∣ x̄n −m0

S̄n

√
n− 1

∣∣∣∣} .

If α∗ < α, where α is the significance level, we reject H0(m = m0), otherwise we do not reject it.

Example 13 Let X be normally N (m;σ2)-distributed. Based on the sample having size 5, it is obtained x̄5 = 10
and ŝ2n = 0.09. Test the hypothesis H0(m = 9.9) for α = 0.1.

Solution: We calculate
x̄n −m0

S̄n

√
n− 1 =

10− 9.9

0.3

√
4 ≈ 0.67.

Now, by using the t table we determine α∗ = 0.5. Since α∗ ≥ α, hypothesis H0(m = 9.9) can not be rejected.

9.3. Pearson’s chi-square test

Statistical procedures whose results are evaluated by reference to the chi-square distribution are all named chi-
square tests. Pearson’s chi-square test is the best-known of several chi-square tests. It tests a null hypothesis stating
that the frequency distribution (a frequency distribution is a tabulation of the values that one or more variables take
in a sample) of certain events observed in a sample is consistent with a particular theoretical distribution. The
events considered must be mutually exclusive and have total probability 1.

Pearson’s chi-square is used to assess two types of comparison: tests of goodness of fit and tests of independence.
A test of goodness of fit establishes whether or not an observed frequency distribution differs from a theoreti-
cal distribution. A test of independence assesses whether paired observations on two variables, expressed in a
contingency table, are independent of each other.
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9.3.1. Test for fit of a distribution

We start with the null hypothesis saying that X has the distribution function:

FX(x) = F0(x).

The procedure goes as follows.

• We divide the set of real numbers in k disjunct intervals

I1, I2, . . . , Ik, Im = [am−1, am), m = 1, 2, . . . , k.

• If the distribution F0 has some unknown parameters, we estimate them (by using method of moments,
MLE,...). We denote the number of unknown parameters in F0 by s.

• We calculate so-called theoretical probabilities:

pm = P{X ∈ Im} = F0(am)− F0(am−1), m = 1, 2, . . . , k.

• We set

Z =

k∑
m=1

(Nm − npm)2

npm
.

Random variable Nm, m = 1, 2, . . . , k are the number of values from the sample belonging to the interval
Im.

• Based on the sample we calculate the value of Z:

z =
k∑

m=1

(nm − npm)2

npm
,

where nm are actual values of random variables Nm obtained from the sample.

• For given α, in the table for χ2-distribution, we find the value χ2
α,k−1−s, so that

P
{
z ≥ χ2

α,k−1−s

}
= α.

• Finally, we compare the values of χ2
α,k−1−s and z in order to decide whether to accept the null hypothesis

or not. If χ2
α,k−1−s > z we accept the null hypothesis FX(x) = F0(x), otherwise we reject it.

Example 14 The die is rolled for 120 times. The result of the experiment is given in the table:

the number on the die 1 2 3 4 5 6
frequence 20 14 23 12 26 25

Taking α = 0.1 test the hypothesis that the die is correct (the probabilities of showing any of six numbers are
equal).

Solution: We test the hypothesis that X , representing the number appearing on the die after the rolling, has the
distribution

X :

(
1 2 3 4 5 6
1

6

1

6

1

6

1

6

1

6

1

6

)
.

The sample size is n = 120. We divide the set of real numbers in intervals

I1 = (−∞, 1.5) , I2 = [1.5, 2.5) , I3 = [2.5, 3.5) ,

I4 = [3.5, 4.5) , I5 = [4.5, 5.5) , I6 = [6.5,+∞) ,
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having frequencies
n1 = 20, n2 = 14, n3 = 23, n4 = 12, n5 = 26, n6 = 25.

Now, we have to find the theoretical probabilities

pm = PH0{X ∈ Im}, m = 1, 2, 3, 4, 5, 6.

We have

p1 = PH0 {X ∈ (−∞, 1.5]} = PH0 {X = 1} =
1

6
,

p2 = PH0 {X ∈ (1.5, 2.5]} = PH0 {X = 2} =
1

6
.

Analogously, we obtain

p3 = p4 = p5 = p6 =
1

6
.

We find the value

χ2
6−1 = χ2

5 =
6∑

m=1

(Nm − n · pm)
2

n · pm
.

From the sample we obtain

χ2
5 =

(
20− 120 · 1

6

)2

120 · 1
6

+

(
14− 120 · 1

6

)2

120 · 1
6

+

(
23− 120 · 1

6

)2

120 · 1
6

+

+

(
12− 120 · 1

6

)2

120 · 1
6

+

(
26− 120 · 1

6

)2

120 · 1
6

+

(
25− 120 · 1

6

)2

120 · 1
6

= 8.5.

Finally, from the table for χ2-distribution we determine χ2
5;0.1 = 9.236. Since 9.236 > 8.5, we accept the null

hypothesis.
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