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1. Lorenz’s weather model 
Lorenz’s mathematical model of the weather, made in 1963, describes the motion of 

the air through the atmosphere. More precisely, Lorenz observed the hot air rising up 

into the atmosphere, then cooling down and eventually falling to the ground. While 

observing the weather conditions, Lorenz noticed that the weather does not always 

behave in a foreseen manner. In his attempt of introducing a mathematical model, by 

following the patterns of the weather conditions, he discovered that the obtained model 

is of chaotic behavior. Actually, the model he introduced was a nonlinear system of 

differential equations with three unknown variables.  

At the beginning, Lorenz was studying a system of 12 equations, and soon he learned 

that small changes of the variables’ initial conditions make large changes in the 

behaviour of the model. This sensitivity of the initial conditions of the model 

nowadays is called the Butterfly effect. One of the conclusions from this analysis is that 

all weather forecasts, for a period longer than a week, most often prove themselves 

wrong.  

From the technical point of view, the Lorenz’s oscillator is nonlinear, treedimensional 

and deterministic. Let us remark that still today this system is used for the 

demontsration of a system with chaotic behavior. Next we give Lorenz’s system of 

ODEs with the unknown functions x, y i z, depending on time t  
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The physical explanation of the unknowns is as follows. The function x represents the 

proportional speed of the air motion as a result of the convection. The function y 

represents the value of the temperature difference between the hot air moving up, and 

the cold air falling down.The function z is the value of the vertical temperature 

difference in the system from down to up.  

The parameters a. b and r in (1.1) represent the essential part of the system, in view of 

its big influence on the system. The parameter a corresponds to Prandtl’s number, 

which was obtained from the basic property of the observed air; its usual value is 10. 

The parameter b represents the observed area in the model; Lorenz took for b the value 

8/3, i.e., 2.666. 

The parameter r is the Raylog’s number, which defines the moment when the air 

convection starts in the system. This number, whose usual value is 28, is essential in 

the process of change in the system from stable into chaotic.  

Depending on the value of the parameter r, the model has the following behaviors. If 

a=10, and b=8/3, then for 0<r<1 the system is stable, while for r>1 it is unstable. If 

1<r<24.74, then the equilibrium points, denoted by c1 and c2 , given by, 
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are stable, while if r>24.74, then the points c1 and c2  become unstable, which means 

that the behavior of the whole system becomes unstable.  

The model structure in the AnyLogic programme is very simple, since the 

mathematical expressions can be easily put into the DEs. In our case, the structure in 

AnyLogic gets the following form: 
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Figure 1.1. Results of the running the Lorenz model in the AnyLogic programme 

2. The Kermack-McKendrick model (SIR model) 

2.1. Introduction 

The epidemic model, introduced by Kermack and McKendrick in the early years of the 

20th century, is a practical and reliable system of equations for monitoring the spread 

of infectious diseases. This model was used for examining the spread of dangerous 

diseases such as plague. Although simple, the model is both complete and efficient.  

The model is based on three variables representing a population of people divided into 

three groups: uninfected (suspected), infected, recovered and immune/dead (recovered, 

immune, and removed). It is important to note that the model was basically designed to 

monitor a limited population, where the number of persons in the course of the 

epidemic changes only slightly. In general, the model reffers to diseases that rarely 

have a fatal outcome, but, with minor modifications, it may be included in a model 

which allows changes in the size of the analyzed population.  

Kermack-McKendrick model allows the inclusion of many features and characteristics 

of epidemic diseases by using appropriate parameters. Actually, it is these parameters 

that determine the behavior of the model, provided that the values for the parameters 

have been carefully selected and thoroughly tested. 

2.2. The system of equations used to describe the epidemic 

The system uses parameters that contain a variety of influences that essentially affect 

the progress or prevent an epidemic. We denote with a the group of parameters that 

influence positively the epidemic, and with b the group of parameters that reduce the 

epidemic. Further on, with S we denote the uninfected group, with I the first group of 

Applets/lorenz-model/Lorenzov%20model%20Applet.html
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infected individuals, and with R the recovered ones. The original system of equations 

of the Kermack-McKendrick model (see [10]), is given in equation (2.1):   

bI
dt

dR

bIaSI
dt

dI

aSI
dt

dS







        (2.1)

 

2.3. Analysis of the system (2.1) 

From the first two equations one can conclude that the number of uninfected 

individuals that will become infected is proportional to the number of contacts between 

people from the group S and group I, both under the assumption that the number of 

contacts depends only on the number of persons in each group, i.e., there is a uniform 

mixing in the population. The third equation is based on the assumption that the 

number of recovered persons is proportional to the number of infected ones, which 

represents an average time that people spend in a state of infection until you cross the 

state when they can neither transmit the infection, nor can they become infected. 

The assumption that there is a constant number of persons in the population, implies 

the following simple equation: 

)()()()( tNtRtItS  , 

where N=N(t) is the total number of the population. Note that the rate of increase of 

infected individuals is given by 0R a/b. Firstly, we start with the equation 

)0()0()0( NIS  . 

Of course, there must be at least a few infected people, i.e, 0)0( I . We are interested 

only in those solutions, where S, I and R are non-negative, which means that it holds 

0
dt

dS
 when there are people who are infected and those that were infected. Since S 

decreases as time goes by: 

1( ) ( ) (0)S t S t S  , for  t>t1>0. 

In other words, the value of S is constantly decreasing and S must be nonnegative, 

meaning that when t , S must have a threshold, which may be 0, i.e, 

)(lim)( tSS
t 

 . 

From the second equation we have 0
dt

dI
, privided that aS<b. Since S decreases as 

time passes, it follows that aS(0)<b and 0
dt

dI
 for each t>0, implying that in this case 
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the epidemic disappears. There will be no epidemic, unless a critical value, b/a, is 

reached by the initial population of uninfected. This value is small if b<<a, which 

means that the immunity stops the spread of the disease. 

The number of recovered, R=R(t), from the third equation, monotonically increases, 

but since NtR )( , the limit )(lim)( tRR
t 

  exists. Next, the limit )(lim)( tII
t 

 , 

also exists, and the expression (I(∞) - R(∞)/N) shows the strength of the epidemic that 

effected the population. It is now necessary to determine these limits.  

From the first and the third equation in (2.1) it follows 

baS
dR

dS
/ , 

Hence                                                                                                                       

)/exp()0( baRSS  . 

From NR   it follows that )/exp()0( baNSS   and 0)( S . This means that 

there will always remain a number of uninfected. In fact, several persons in the 

population will not get sick until the end of the epidemic. 
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Clearly 0)()(  StS  and  ttI ,0)( . As a consequence of this analysis, we 

have )/exp()0()( baRtStS   and the equality 

  )./)(exp()0()( bSNaSS 

          

(2.2) 

Note that equation (2.8) determines )(S . The equation is satisfied only for one 

positive value of )(S , less than b/a. Once we find )(S , the limit )(R  can be found 

from )()(  SNR  and the spread of the epidemics equals to ./)( NR   

2.4. A Vaccination Model  

So far we have worked with the assumption that only few people have natural 

immunity, and thus their number can be ignored. We continue to assume this 

assumption, but we will include consideration of the case when the epidemic is 

spreading so fast that it is necessary to stop the spread the epidemic by vaccination. 
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To simplify the model, we assume that vaccination removes a person from S or R 

momentarily, and that there is a way to avoid vaccination of those who are infected 

(group I). Now, we have to introduce a new group, V, consisting of the vaccinated 

people. Thus we have the following system: 

            

)(

)(

t
dt

dV

taSI
dt

dS









      

(2.3)

 

                                                

 

The first equation in the system (2.3) changes the first equation of the initial SIR 

model (see equation (2.1)). Function (t) is the rate of vaccination. 

It is not easy to choose the function representing the rate of vaccination. Namely, any 

vaccination program includes the cost of personnel commitment to conduct the 

vaccination, their efficient use of equipment and other resources.  

Moreover, we must take into account the damage suffered by the whole society from 

the epidemic. It is desirable that the vaccination program is limited by the total number 

of infected at some time, and to keep the number of infected below a desired level. To 

ensure that no more than 1N individuals from a population get the disease during the 

time interval Tt 0 , it is necessary that  

1)()( NTITR  . 

To keep the number of infected under a certain value 2N  in the same period of time, 

we have to assume .)(max 2
0

NtI
Tt




 

The control of the epidemic in this way implies that )(t  should be chosen small 

enough in order to meet the limits given in the previous two inequalities, and thereby 

keep costs at a minimum. Note that we got a problem of dynamic programming. 

2.5. Model parameters 

The first step is to determine the formulas for the infection factor a and the disease 

withdrawal factor b. For simplicity, we use only the following four parameters, namely 

d, c, p and n, which have a significant impact on the system and on the behavior of the 

epidemic:  

d: duration of illness 

c: rate of contacts 

p: probability of infection 

n: total population. 

We will use the following formula for the parameter  a=cp/n  which shows that the 

spread of the epidemic increases, whenever the rate of contacts occuring between 
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people from the observed population increases, and the likelihood that the disease is 

transferred to direct contacts between the individuals. Note that the number 1/n 

multiplied by the number of uninfected, S, gives the infected part of the population. 

The parameter b satifies the equality b=1/d, which shows that there is an inverse 

proportion between the softening of the epidemic, and the duration of the disease. In 

other words, the epidemic disease of shorter duration will end sooner. An example of 

this is the Ebola virus. The reason why this extremely infectious and fatal disease is 

not spread around the world that it that quickly kills its victims, the epidemic has very 

short duration, and it is unlikely that the disease will spread to a larger territory. 

By testing the parameters, one can determine the parameter values appropriate for the 

required behavior of the model. For now on, we shall use the following values for the 

parameters: c=5, p=0.05, n=1000, d=15. Entering the equations in AnyLogic, one can 

construct the following simulation model: 

d
b

n

cp
a

bI
dt

dR

bIaSI
dt

dI

aSI
dt

dS

1










       (2.4) 

       The corresponding model structure in AnyLogic is given below: 

 

 
By entering the initial values: S=999, I=1 and R=0, and running a simulation we obtain 

the following graph, where the number of uninfected is shown in blue, the number of 

infected in red, and the number of recovered in yellow. 
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Figure 2.1. SIR model with vaccination 

 

The vaccination should greatly reduce the number of infected in the system. In the 

model, we include vaccinations by changing the system of equations, compare (2,4) 

above and (2.5) below. 

d
b

n

cp
a

dt

dV

bI
dt

dR

bIaSI
dt

dI

aSI
dt

dS

1
















        (2.5)  

Model structure in AnyLogic is now different, as can be seen from the next figure. 

 
   Now, by running the simulation, we obtain the following graph: 

Applets/sir-model/SIR%20SD%20model%20vakcina%20Applet.html
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                                     Figure 2.2. A smaller number of infected due to vaccination 

 

Since the parameters in both instances were the same, one can compare the simulation 

results. Of greatest interest is the number of infected. In the first example, the number 

of infected has come to almost 400. In the model with vaccination only a small number 

of infected moved over 100. 

2.6. The agent SIR model in AnyLogic 

As mentioned in the previous text, each model created in system dynamics can be 

translated into an agent based model. To that end, first one has to create a new model 

and a new class of active objects called Person. In this class the state diagram should 

be inserted.    

Next, a state diagram describing the behavior of an agent has to be made. Obviously, 

the diagram must have three states: uninfected, infected and recovered. The next figure 

shows the state diagram as created in AnyLogic. 

 
   When a diagram is drawn, it should set the conditions for transitions between states, 

transition between uninfected and infected states will make over the signal events. If 

an uninfected agent gets the signal "contact", which means that there has been contact 

with an infected agent, then he switches to the state infected. Internal transition from 

the state infected with the ability of an infected agent sends a signal contact. We will 

assume that the rate of contact is as follows: 

 

if (randomTrue(verovatnocaZaraze)) { 
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Osoba neko=main.ljudi.random(); 

neko.statechart.fireEvent("kontakt"); 

} 

The transition from infected to recovered state also happens with a rate. For the 

transition rates we take the value 1/trajanjeBolesti (the duration of the disease). We 

also need to enter the input and output actions for each state. The variables 

brojNeZarazenih (number of suspected), brojZarazenih (number of infected) and 

brojOporavljenih(number of recovered) monitor the number of agents who are in these 

states, so that the input action in the state would be required to increase by one, and the 

output action to reduce the number of agents in this state. The picture shows how it 

was done for the state of infection. In the same way one can analyze the status of not 

infected and recovered. 

 

 
   

 Returning to the diagram structure of class Person, there is a need to define the main 

variable of type Main and has an initial value (Main) getOwner). 

The class of persons should include the three parameters that are features of the agent. 

It is necessary to define the parameter trajanjeBolesti that type double and has an 

initial value of 15, verovatnocaZaraze, that type double and has an initial value of 

0.05, and a parameter of type double stopaKontakata with an initial value 5. This 

defines the class Person. The diagram of the class structure Person has to be inserted 

into the Main class by dragging the mouse. In the diagram of the structure Main there 

will appear an orange rectangle that represents the agent defined over a class of 

persons. More is needed into the properties of this class can change the name for a 

class of people in the Replication tab 1000. This means that in our model we shall 

make 1000 agents. Moreover, on the diagram structure there should be the variables 

broj NeZarazenih, brojZarazenih and brojOporavljenih of the type Integer. 
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The model is now almost finished, but we still have to do something to start the 

work.Recall that on the diagrams for the agents each agent will be placed on creating 

the uninfected state because the state shows the initial indicator. Since there is no 

infected person, nothing will happen. Thus there is a need for one agent to manually 

enter a code that will start the epidemic. It is necessary to open the Code field in the 

Main Class section of the Startup Code and then enter: 

 

ljudi.item(0).statechart.fireEvent("kontakt"); 
 

which ordered to the zeroth agent to send the signal event contact. Animation can be 

kept simple for the time being. Next, we shall draw a rectangle animation to be used 

for graphical representation of the infected, uninfected and recovered. Graphical 

display is enabled by using the Business Graphics Library, where it is necessary to 

insert the object ChartTime into the class structure diagram Main. The properties of 

chartTime are set on the next picture: 

 

 

Now, running the simulations, we obtain the following graph: 
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Figure 2.3. System dynamics model 

 

Next, comparing the graphics obtained in the system dynamics model (Figure 2.3) with 

the same parameters for the Agent based model (Figure 2.4), one can observe the 

differences. 

 

Figure 2.4. The agent based model 

 

From the graph obtained in the agent based model, one can see the stochastic nature of 

the model, but it is still very similar to results obtained in the system dynamics model. 

Now, a question naturally arises: Why is it necessary to use agent models and what are 

its advantages? In the system dynamics model, the duration of the disease was shown 

by the exponential distribution. It is not a real situation for some diseases. In fact, it 

would be better if the duration of disease is shown using a triangular distribution. 

The transition between the state infected and the state recovered should be modified so 

that the rate of transition should be replaced by the Fire After timeout, and in the 

Timeout field, the following should be entered: 

 

Triangular 

{trajanjeBolesti/2,trajanjeBolesti,trajanjeBolesti*1.5} 

Applets/sir-model/SIR%20SD%20model%20vakcina%20Applet.html
Applets/sir-model/SIR%20SD%20model%20vakcina%20Applet.html
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 Now the simulation shows the following graph: 

 

 

Figure 2.5. Change in a system dynamics model 

      

This change is possible in a system dynamics model. Changing the equation one can 

try to reproduce this behavior, but it significantly complicates the equation. Even if we 

achieve to get this behavior in a model of system dynamics, it is just an attempt to 

reproduce known results, while the agent model is a way to model the actual 

characteristics of some diseases.  

If we recall the system dynamics model previously described, a model is contained in 

it, and vaccinations. How would it put the process of vaccination in the agentbased 

model? In view of the possibility of combining paradigms in modeling the AnyLogic, 

we may model the system dynamics through vaccination. 

On the Main class diagram of the structure will bring the necessary variables for 

vaccination. One variable should have a name with an initial value of razvojVakcine 10 

while the other variable is given by the differential equation 

inerazvojVakc
dt

dVakcina
 . 

Moreover, the diagram would require a static timer, which should assign the name 

immunization. The timer will be cyclic, with a timeout and actions to be performed is 

given by the following code: 

 

while (vakcina>1) { 

  ljudi.random().statechart.fireEvent("vakcinacija"); 

  vakcina--; 

} 
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This code says that every time the timer comes to its end, perform the vaccinations as 

long as there is vaccine in stock. Vaccine recipients will be selected in a random way, 

but only uninfected agents can go into a state of vaccinations. 

 

 

In the state diagram for the agent, we have to add another state - vakcinisan. The 

starting action for that state will be main.brojVakcinisanih++. The transition from the 

state neZaražen into the state vakcinisan waits the signal event „vakcinisan“. In this 

way, an agent can move into the state vakcinisan only from the state neZaražen. 

Before starting the animation, it is necessary to put   chartTime into the Properties and 

show the variable brojVakcinisanih. The obtained graph clearly shows the efficiency 

of the vaccination. Namely, the number of infected  

has much decreased, compared with their number obtained in the previous simulation. 
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Figure 2.6. The graphs of the S, I and R functions 

Perhaps the most important influence on the spread of the epidemic is the spatial 

environment in which the epidemic spreads. Introducing the impact of the environment 

in the system dynamics model implies the work with partial differential equations, and, 

presumabely   such models can take us too far. 

However, the introduction of an environmental impact in the agent model is not 

difficult. Thanks to the agent modeling library, one can easily create an agent with a 

quite a few different properties. To the diagram of the structure one has to include the 

object agentBase from the library object AgentBase. After that, we have to define the  

The dimensions of the agent’s environment will be 300 x 300. The default network of 

the agents will be all in range and contact range should be set to 30. Next, we have to 

change the code for the internal transition in the state infected, as follows:  

 

if (randomTrue(verovatnocaZaraze))  

agentBase.sendToRandomContact("kontakt"); 
 

and then add into the property onReceive of the object agentBase the following  

expression: 

statechart.fireEvent(message) 

The result of this simulation shows an even greater reduction of the number of 

infected, because now the environment affects the agents by the rate of contacts. Then 

the epidemic is spreading slowlier through the population, and thus the vaccination 

process becomes more efficient. 
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Figure 2.7. 

 

In order to get a better presentation of the environment influence on the spreading of 

the epidemics, one can add into the model the animation of each agent. Since the 

agents are multiplied objects, it is enough to make the animation just for one agent, and 

then in the final animation all of 1000 agents will appear in the model. Next, for better 

visualization of the epidemic spreading, one should add in the field Fill color an 

appropriate color. 

  

Figure 2.8. The simulation of the model 

3. Mathematical pendulum 
From a mathematical point of view, the pendulum is an oscillating system consisting 

of  a nonstretchable string of some length but of negligible mass, and a negligibly 

small suspended ballot with larger mass than that of the string. The problem is to 

observe the movement of the pendulum under the influence of gravity. 

For simplicity, for now we assume that the pendulum’s length is l = 1 and that the 

pendulum’s mass is m = 1. The first assumption is that gravity has a constant impact 

Applets/agent-model/SIR%20Agentni%20model%20Applet.html
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force to the pendulum force g acting vertically downward. In order to analyse the 

movement of the pendulum in a positive or negative direction, we have to measure the 

angle α compared to the pendulum at rest, and the pendulum angular velocity ω. The 

equation of the motion of the pendulum is: 





2

2

dt

d
sing .                            (3.1)                                                                                                         

                                       
.                                                      

Using the definition of the angular velocity ω, we can put it in the previous term and 

obtain 





sing


        (3.2) 

By analyzing the behavior of the pendulum, we can conclude that the model of an ideal  

mathematical pendulum, appears in four states: 

 pendulum is at rest vertically down; 

 pendulum is moving between two points in which they now rest with the same 

deflection on both sides of the balanced position; 

 pendulum rotates continuously in the same direction and never comes in the 

steady state; 

 pendulum is vertically upright at rest (unstable). 

This model of the pendulum is fairly easy to model in the AnyLogic. Namely, it is 

enough to enter the above equation, and observe the behavior of the pendulum. In the 

model, we use variables to represent the x and y coordinates of the pendulum in 

animation, namely the angle 0  and the angular velocity. To begin with, we introduce 

two parameters: the initial angle 0  and the length l of the pendulum  and the length l 

.  

By introducing another parameter in AnyLogic,one easily adds the resistance at the 

middle of the pendulum. The parameter r represents the resistance of the environment. 

Just change the equation for the radial velocity: 

 rg  sin  
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    Instead of a detailed description of how the model is made in AnyLogic, we rather 

use the report generated for each AnyLogic model. The report is a good way to get 

someone to show detailed models of structures. 

 

 

 

 

Active Object: Main 
 

 

Parameters 

Name alfa0 

Type real 

Default value 3.14 

Name l 

Type real 

Default value 100 

 Name g 

Type real 

Default value 9.81 

 

Icon 

Picture 

 

 

Structure 

Picture 

 

Variable Omega 

Variable type real 

Equation type Integral or Stock 

Equation d(omega)/dt = (-g*sin(alfa))/l 

Initial value 0 

Variable alfa 

 Variable type real 

Equation type Integral or Stock 

Equation d(alfa)/dt = omega 
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Initial value alfa0 

Variable y 

Variable type real 

Equation type Formula 

Equation y = l*cos(alfa) 

Variable x 

Variable type real 

Equation type Formula 

Equation x = l*sin(alfa) 

  

     

Animation 

Name animation 

Picture 

 

Oval Oval1 

X x 

Y y 

Line Line2 

End point X x 

End point Y y 

    

4. The Bouncing Ball 
This model is one of the simplest hybrid models, and is thus often used as an example 

of hybrid modeling. The ball is released from a certain height to a solid base, hitting 

the ground and moves up and then again falls down. After each shot of the ball on the 

ground, it loses a certain portion of energy, so that eventually ceases jump. The falling 

of the ball down is simply described by a system of diferential equations (4.1)  given 

below: 
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,g
dt

dV

V
dt

dy

y

y





                       (4.1)  

where yV  is the speed of the ball on the y axis, and g is the gravity. The moment when 

the ball hits the ground is the part when this model becomes hybrid. In AnyLogic this is 

simply modeled using a state diagram. 

 
 

In the phase of falling, the ball behaves according to the above equations. The 

transition "bouncing" has to wait for the condition 1y  and 0yV , provieded that 

1yV . If these conditions are met, then we have 

yy kVV '                           (4.2)  

where k in (4.2) is the coefficient representing the loss of energy of the ball. After that, 

the ball goes back into the "falling" phase. 

 

 
 

Next, the state diagram enters its final state, which means that the ball does not have 

enough energy to continue its bouncing, and the system goes to a stand.. 
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This example shows how a seemingly simple model can have a hybrid behavior, thus it 

is essential to have a tool that allows you to easily create hybrid models. 

 
 

5. The Lotka-Volterra model 
The Lotka Volterra model is composed of a pair of differential equations describing 

the relationship between the predators and preys in the simplest case. The model was 

developed around 1925, independently by two authors, a biologist Alfred Lotka, and 

the famous Italian mathematician Vito Volterra. Volterra has developed a model to 

explain his son in law the behavior of two fish populations in the Adriatic Sea, where 

one species (the preys) is the food for the other one (the predators, but often in the 

literature called "sharks"). 

The previous model is a natural extension of the so-called logistic model, introduced 

around 1845 by the Belgian scientist Verhulst. In the model, the population of 

predators and preys oscillates so that the largest population of predators is just below 

the largest prey population. This model has the following assumptions: 

 population of preys will grow exponentially if there are no predators; 

 population of hunters will starve (disappear) in the absence of the preys; 

 hunter can eat as many preys; 

 two sides are moving in a homogeneous, confined space in a random way. 

Let us introduce the following variables: 
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 P: predator population 

 N: prey population 

 t: time 

 r: rate of growth of the prey population 

 a: rate of attacks on the prey population  

 q: rate of mortality of the predator population  

 c: efficiency of conversion of food into descendants  

 

In some models, another assumption is introduced, namely the rate of mortality of the 

prey population, In general, it is assumed in the model that the prey does not become 

extinct naturally, but rather gets eaten by the predators. We add that in some models 

the product of the parameters c and a is called the productivity of predators. 

Let us consider what happens to the predator population when the prey population is 

not present in the observed eco-system. Without predators’ food, the number of 

predators declines exponentially, since then it satisfies the following simple ODE: 

qP
dt

dP
                             (5.1)             

Note that qP is the product of the mortality rate of the predators and the population of 

predators. The negative sign in the upper equation indicates the decline of the number 

of predators. We get a more complicated and perhaps a more realistic model in the 

form od ODE, if we add the product  caPN  to the right hand side of the upper equation 

(5.1), see equation (5.2) below. Note that the mentioned product describes the rate of 

attacks on the preys multiplied by the number of predators and the number of preys.  

qPcaPN
dt

dP
 .           (5.2)  

Next, the population of preys is expected to grow exponentially in the absence of 

predators:  

rN
dt

dN
                        (5.3)  

The presence of predators prevents the exponential increase of the preys. The product 

aPN describes the mortality of the preys, implying the following ODE: 

 

aPNrN
dt

dN
 .           (5.4)  

 

The obtained equations (5.1) – (5.4) describe the predator-prey model, which predicts 

cyclic dependencies. As the number of predators P grows, so does the product aPN 

also, which additionally enhances the growth of the number of predators. At the same 

time, the aPN product reduces the number of preys, N, which indirectly reduces the 

number P of predators.  Now, as the value of aPN in (5.4) decreases, the prey 
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population is recovering and N starts to grow. But then the parameter q increases and 

the cycle will start again. The ideal curve is shown on the graph below. 

The model was tested also in experimental conditions, by following the number of 

both populations. In particular, one experiment, done by Huffaker in 1958 can be 

accepted as valid. 

 

Figure 5.1. Graph of the Lotka-Volterra model 

    

He observed two populations.  One was the predator, and the other the prey population. 

In the observed envionment he put several oranges (prey’s food), and covered them ba 

wax, which enabled Huffaker to control the amount of the eaten food. In this 

environment he put also few rubber balls. On the graph 5.2 below we can see the result 

of Huffaker’s experiment, obtained for one choice of oranges and balls.   

 

Figure 5.2. Graph of the Lotka-Volterra model obtained by following two populations 

in laboratory conditions 

 

The graph shows that the populations are exhibiting a cyclic behavior, and that the 

maximum value for predators behind the maximum value for the preys. In order to 

conclude that this experiment really reflects the assumptions of the Lotka-Volterra 

model, we must consider another fact. Actually, in this experiment there is a rather 

complex environment in which there are also other populations, which is contrary to 

the assumption made in the model. Thus also the assumption that the predators meet 

the preys only randomly is questionable. 
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Another experiment has been based on monitoring the number of animals in nature. 

The problem in monitoring the population in nature and modeling of the population is 

that most predators rely on multiple preys. Fortunately, there are several species that 

are strictly specialized in the course of evolution, and the food they eat is of just one 

kind. In Canadian forests there is an ideal example of this relationship between the 

population of lynx and snow rabbits (hares).   

The Hudson Bay Company has been closely monitoring the number of lynx and rabbits 

between 1800 and 1900. It was for a long time noticed that these two populations are 

very good for observation, because of the frequent attacks of the lynx on the hares, in 

view of their way of hunting. 

 The collected data show cyclic oscillations in both populations at approximately every 

12 years. The graph 5.3 presents the data obtained. 

 

 

5.3 The graph obtained by observing the populations of lynx and hares in the nature. 

 

A lack of Lotka-Volterra model is relying on unrealistic assumptions. The prey 

population has a limited amount of food in nature and this affects the number of 

predators, while, on the other hand, they can eat unlimited amounts of food. From the 

mathematical point of view, the cyclic behavior we got from a system of differential 

equations in the Lotka-Volterra model tends to repeat itself endlessly and thus a similar 

behavior will be obtained for each set of values for the four-parameter model. 

Let us conclude that the Lotka-Volterra model is not enough to present the behavior of 

most populations in the nature. In fact, additional information, specific for the analysed 

system, has to be inserted in the system.  

The presentation of models in AnyLogic we start with the simplest model. Since the 

AnyLogic has a good method of solving differential equations, the easiest way is to 

define two varuables that will represent the populations of hares and lynx. These two 

variables appear in a system of differential equations for the Lotka-Volterra model 

given below in this chapter. The variables are placed in the class of an active object in 

the model. At the class level the following parameters are defined natalitetrsova, 



Mathematical and Simulation Models in the AnyLogic Program           25 

stoparastazeceva, stopanapada, efikasnostkonverzije with initial values. The animation 

shows the number of hares and lynx, both graphically and in numbers. 

      

  

  

5.4. The AnyLogic model of the interaction between hares and lynx 

 

 

 

 

Figure 5.5. A linx and its prey interaction in number and the corresponding graph 

 

The following mathematical model represents a shift in terms to some finer structure of 

the model and better use of opportunities of the AnyLogic program, in which we have a 

classic example of system dynamics. Differential equations appearing in (5.5) are 

Applets/lovac-zrtva1/lovac-zrtva1%20Applet.html
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given in a somewhat different way, but they are still in line with the Volterra-Lotka 

model.     

 

lastiPovrsinaOb

Zecevi
evagustinazec

isevaNatalitetRRisevieviRodjeniRis

RisevievaGustinaZeceviUginuliZec

ecevaNatalitetZZecevieviRodjeniZec

eviUginuliRiseviRodjeniRis
dt

Risevid

eviUginuliZeceviRodjeniZec
dt

Zecevid













)(

)(

    (5.5) 

 

Lynx mortality was given as a table search on the basis of these data was made using 

the spline interpolation function. 

 

 

 

The structure is inserted, and two timers that are used for insertion of lynx and hares 

into the system during the execution model. For each timer is set to operate in manual 

mode. In executing a timer UbaciZeceve execute the Java command Rabbits + = 1000 

Timer UbaciRiseve executed Lynx + = 50. 

In the active object class, there are three real parameters, namely povrsina oblasti (area 

of the region), NatalitetZeceva (natality of the hares) and NatalitetRiseva (natality of 

the lynx) with default values given below. 
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Figure 5.6. Another linx and prey interaction in numbers 

 

The animation is in this model more complex. Moreover, in order to display the 

number of individuals for the hare and lynx numbers, and by using diagrams, 

interactive forms have been inserted. Two command buttons are connected to timers in 

the diagram structures that increase the number of individuals. Three sliders are linked 

to parameters povrsinaoblasti, NatalitetZeceva and NatlitetRisova. Using the slider in 

the conduct, we can change the values for these parameters. 

Applets/lovac-zrtva/lovac-zrtva%20Applet.html
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5.7. Predator prey model created by agents 

 

The model based agents in the AnyLogic program represents rather well the real 

system. Now, we add the following hypotheses given below. 

 Both the hares and lynxes have a certain life expectancy. Their deaths are 

caused by age, starvation and lynx attacks. 

 Hares and lynxes are aware of the two-dimensional space in which they are 

located. 

 The density of the hare population is limited, and they reproduce themselves 

only if there is enough space around them. 

 Lynxes hunt only in the area around them and they do that with certain 

frequency. 

 If the lynx does not catch a hare in the course of hunting, then it changes its 

position in space. 

 If in a certain time period a lynx fails to eat a hare, then  it dies.  

     Next we give some elements of the AnyLogic model. 

Applets/predator-prey-model/lovac-zrtva3%20Applet.html
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Each agent is assigned the variable Location, which contains information on the 

current position of the agent in space. The initial position is assigned of each agent in a 

random way. The value of the variable location site is updated when the agent moves 

in space and that influences its behavior. 

The timers in this model are defined both for the birth and death of the lynxes and the 

hares.The behavior of the timer is cyclic, and creates a new agent by the exponential 

distribution. Births of the hares depend also on their local density. For the hares, the 

diagram is simple, and it describes the behavior of the hares. The states in the diagram 

are alive and dead. 

They are defined by two transition: one for the signal (message) of the lynx "I ate 

you!". The second transition is the definition of time and a life expectancy of a hare. 

The state diagram for the lynxes is more complicated. Namely, the lynxes prefer a 

certain time period for hunt. Whether a lynx finds a hare, depends on the density of 

hares and the number of lynxes in the area. If a lynx finds and eats a hare, then it sends 

a signal (message) to the hare "I ate eat you!", leaves the state of hunger, and 

immediately reenters to the hungry state. If the lynxes had no luck in hunting the hares, 

and the lynxes do not catch a hare, then they move in space, but remain in a state of 

hunger. 

When a lynx catches a hare, he immediately resets the time that indicates how many 

lynxes may be without food before they die. The time that the lynxes can spend 

without enough food is just one day, otherwise he does not survive. The model defines 

algorithmic functions to determine whether the area around the hares is overcrowded, 

while this function determines new areas for lynxes in a random way. 

The result obtained in the simulation gives a graph that looks much like the graphs 

obtained by observing a population in nature. The highest values for lynxes are a little 

behind the greatest value for hares. 

Unlike to the previous models, it can happen that the total population tends to 

extinction, because of the parameter values. The simulation was added a 2D image of 

the space where the lynxes and hares are staying. 

The model is based on an XJTek company's model. 

6. A universal, simple queuing model 
The model to be described can be applied to various types of queuing models. Often 

we meet the situation when we have to wait in a line to "get" a service, say, visit a 

doctor, cash a check,  or wait in a line in front of an ATM. All these models have in 

common that the client enters the system, gets in the line, waits for the service, 

receives the service he needed and then leaves the system. This is a rather simple 

model, but the main problem in making this model is finding the appropriate random 

Using the Enterprise Libary, an important part of the AnyLogic programme, one can 
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put together a model with individual elements. By adjusting the parameters of each 

element that are used, one gets the desired behavior of the model. For now on, we only 

use four elements to make a simple queuing model. 

 
 

The first element, source, is used for the generation of the entities (client, 

manufacturing parts, etc.,) arriving into the system. The parameters for the source are 

simple, and, most often, they are used for entering the random distributions according 

to which the entities were generated. 

 

 

 

In our example, the arrival of entities is accomplished by an exponential distribution 

with parameter 0.67, and by each generation of new entities in the system exactly one 

entity is inserted, because in the field entitiesPerArriva, when one enters 1.arrivalMax, 

defines the maximum number of generated entities, and by entering infinity, we get an 

infinite number of generated entities. More precisely, the entities will be inserted into 

the system throughout the duration of the simulation model.  

The next element in the model is the queue, which enables the generated entities to 

stand in a line. This element is essential for defining the maximum capacity line, which 

in our case is 1.5.  
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One can also select the type of the queue. In our case, the queue is of FIFO type (first 

in first out). The fields preemption and timeout are also very important, since they 

allow us to model a simple typical customer behavior in such systems. It might happen 

that some clients will not want to enter and/or wait in a long queue, but will rather 

leave the system. If the field preemption enrolls the true value, this option will be 

activated in the model. What will happen next with this entity can be defined so that 

the output from the queue element corresponding to the option preemption, connects a 

new element from the Enterprise Library, e.g., with the sink entity.  

By the same principle it can also be used to represent timeout options of those 

customers who stood in the line, but their waiting times turned out to be too long, and 

thus they wanted to give up. The delay element is a "service delivery", or, for example, 

the time the client spent waiting for his cashier to take or deposit some cash.   

 

 
 

In the delay time one has to place a random distribution, which corresponds to the 

duration of the service (in our case it is a triangular distribution with parameters 0.8, 1, 

1.3, which means that the customer is retained, for example on the bank desk, at least 
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0.8 time units, a maximum of 1.3 with an average time of a time unit). Field capacity 

determines how many clients can be serviced simultaneously. 

The element sink has nothing to adjust for the behavior of the model, since it simply 

destroys the generated entities. 

This model is a starting point for learning and understanding the queuing models. By 

extending this model with other elements of the Enterprise Library, we can get very 

complex models such as models of airports, emergency services, manufacturing, etc.  

It is noteworthy that, in these models, the behavior of the models associated with the 

elements in the model and not the entities situated in the model as is the case with 

agent models where the behavior is defined for the agent (the entity). It is also 

important to note that this model does not include the use of resources, which also 

represents a step towards a "more realistic" model, for example if you model a doctor's 

surgery with a doctor, a nurse and say an ECG machine.  

These are the resources that the patient will need to use in the course of receiving the 

service. Sharing of resources is actually the biggest problem to be addressed by the 

mathematical model. Let us add that a natural question is whether the doctor's office 

will pay off purchasing an ECG device in order to reduce the waiting time for patients 

and enable more medical examinations.  

The correct answer on this important question (which means more revenue and more 

satisfied patients) can be easily checked by the queuing model. 
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