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Problems in Mathematics
&
Experiments with Mathematica

3. Limit and continuity

3.4 Simple and compound growths. The limit Iimx_,o(1+ —i—)x =e

I Theory I

e Simple, arithmetic growth

Let the initial amount of a material or a population be Ay. Let the amount A; after a fixed
time (e.g. T) be defined by A; = Ay +d. Then, at the n'th moment the amount will be
An=An_1+d=Ap + nd. This growth is called arithmetic since the sequence A, is an
arithmetic sequence.

Properties of the arithmetic growth
If d>0,then lim Ay + nd = co.
N—oo0

If d <0, then lim Ay + nd =-c0 (restricted meaning in life science models).

N—oco

Geometric growth

Let the initial amount of a material or a population be Aq. Let the amount A, after a fixed
time (e.g. T) be defined by A; =qAo. Then, at the n'th moment the amount will be
An =g A1 =g" Ap. This growth is called geometric since the sequence A, is a geometric
sequence.

Reformulation: compound growth

Let the initial amount of a material or a population be Ag. Let the growth rate be p during a
fixed length of time, that is, A; = (1 + p) Ag. Then, at the n'th moment the amount will be
Av=1+pAr1=1+p" A,

Properties of arithmetic and geometric growth

If g>land Ag > 0, then Ap1 >An and limyL. q" Ag = co.

If g=1,then A, =A,and limy,, q"Ag=1.

If 0<q< land Ag >0, then0 < Apq <Ay and limp,, q"Ag=0.

If -1<q<0,then0<|An;1] <|Anland limy,. q" Ag = 0. The sequence oscillates.

If g=-1,then A, =-An.

If g<1land Ag >0, then |Ays1| >|Anland lim,L. |q" Ag| = co. The sequence oscillates.
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e Compound interest: a problem leading to e

Let the initial amount of our money at the bank be My, and let the annual interest be p, that
is, our money at the end of the year is M; = (1 + p) M. Calculate the growth twice a year at
interest rate % Then, our money at the end of the year is M, = (1 + %)z M. It is easy to see
that M, >M;. Count the growth theee times, .., n-times a year. We obtain
Mn = (1 + £)" Mo, and it can be proved that

M0<M1<M2<...<Mn_1<Mn.

Can our money grow unbounded? NO! The sequence {M,} is bounded. Since it is monoton
increasing and bounded (see the section Definitions,...), the limit

lim(@+ 2)°

N—oo

exists. In particular, we introduce the following definition:

DEFINITION 3.4.1

The sequence (1 + %)n is bounded and monotone increasing. Its limit is called e.
e= liml+ %)n.
N—o0
In more general,
e= lim(l+ %)X= lim (1 + x)*.
X—00 x=0
The sequence (1 + %)nﬂ is bounded and monotone decreasing. Its limit is also e.
e=lim@+ )",
N—o0
An approximate value of e
N (e, 100)
2.718281828459045235360287471352662497757247093699959574966967 -
627724076630353547594571382178525166427

e Compound interest, continued
By the definition of e, we obtain that

liMnoe My = limnse (1 + £)" Mg = Mg 2P,

e Important remark

The definition is not used to approximate e since the convergence is very slow. Look at
some members of the sequence

n

1
a[n_] := (1 + —)
n
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TableForm[Table[{2”n, N[a[2”n]], N[e-a[2”™n]]}, {n, 1, 10}],
TableHeadings -> {None, {"'n", "a(n)", "e-a(n)'"}}]

n a(n) e-a(n)

2 2.25 0.468282
4 2.44141 0.276876
8 2.56578 0.152497
16 2.63793 0.0803533
32 2.67699 0.0412917
64 2.69734 0.0209369
128 2.70774 0.0105428
256 2.71299 0.0052902
512 2.71563 0.00264983
1024 2.71696 0.0013261

A series approximation of form
11
aa[n_] := -—
< 1!
i=0 ¢

is uncomparably faster (see the section Taylor polynomials).

TableForm[Table[{n, N[aa[n]], N[e -aa[n]]}, {n, 1, 10}],
TableHeadings -> {None, {''n'", "aa(n)", "e-aa(n)'}}]

n aa(n) e-aa(n)

1 2. 0.718282

2 2.5 0.218282

3 2.66667 0.0516152

4 2.70833 0.0099485

5 2.71667 0.00161516

6 2.71806 0.000226273

7 2.71825 0.0000278602

8 2.71828 3.05862x10°°

9 2.71828 3.02886x 10

10 2.71828 2.73127x10°8
I Problems and exercises I

PROBLEM 3.4.1 Simple growth

Let the initial amount of bacteria be equal to Ag, and it growes by d during every unit time
period. Calculate the population at the n'th time unit. Calculate also the doublelife, halflife,
and the time when the population dies out (if d < 0).

(1) Ay=100; d =10; n=10;
(2) Ay=500; d=16; n=-20;
(3) Ap;=1000; d =30; n=5;

(4) Ay=200; d=-=25; n=T7;
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PROBLEM 3.4.2 Geometric growth

Let the initial amount be equal to Ag, and the growth rate in a unit time be g, that is,
Ani1 =g A, . Calculate the n'th member. Calculate the doublelife and halflife.

(1) Aj=2;9g=05; n=5;
(2) Ay=10; q=-0.5; n=4;
(3) A;=100; q=0.9; n=6;
(4) Ayg=500; g=-2; n=5;
(B) A=20; p=2; n=4;

PROBLEM 3.4.3 Geometric growth

Let the initial amount of bacteria be equal to Ag, and the growth rate in time unit be p %.
Calculate the population at the n'th time unit. Calculate the doublelife and halflife. Can any
of these population die out?

(1) Ay=2; p=10; n=5;

(2) A;=100; p=-20; n=12;
(3) Ag=2000; p=5; n=3;
(4) A;=500; p=-12; n=5;
(5) A;=2000; p=8; n=4;

PROBLEM 3.4.4

Using the theorems for limits and the definition of e, calculate the following limits.
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