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3. Limit and continuity

3.4 Simple and compound growths. The limit limxÆ0 I1+ 1ÄÄÄÄÄx Mx
= „

Theory

è Simple, arithmetic growth
Let the initial  amount of a material or a population  be A0.  Let the amount A1  after a fixed
time  (e.g.  T)  be  defined  by  A1 = A0 + d.  Then,  at  the  n'th  moment  the  amount  will  be
An = An-1 + d = A0 + n d.  This  growth  is  called  arithmetic  since  the  sequence  An  is  an
arithmetic sequence.

è Properties of the arithmetic growth
If  d > 0, then lim

nØ¶
 A0 + n d = ¶. 

If  d < 0, then lim
nØ¶

 A0 + n d = -¶  (restricted meaning in life science models). 

è Geometric growth
Let the initial  amount of a material or a population  be A0.  Let the amount A1  after a fixed
time  (e.g.  T)  be  defined  by  A1 = q A0.  Then,  at  the  n'th  moment  the  amount  will  be
An = q An-1 = qn A0.  This  growth  is  called  geometric  since  the  sequence  An  is  a  geometric
sequence.

è Reformulation: compound growth
Let the initial amount of a material or a population be A0. Let the growth rate be p  during a
fixed  length  of  time,  that  is,  A1 = H1 + pL A0.  Then,  at  the  n'th  moment the  amount  will  be
An = H1 + pL An-1 = H1 + pLn A0.

è Properties of arithmetic and geometric growth
If  q > 1and A0 > 0, then An+1 >An and  limnØ¶  qn A0 = ¶. 
If  q = 1, then  An+1 =An and limnØ¶  qn A0 = 1. 
If  0<q < 1and A0 > 0, then 0 < An+1 <An and  limnØ¶  qn A0 = 0. 
If  -1<q < 0, then 0 < » An+1 » < » An » and  limnØ¶  qn A0 = 0. The sequence oscillates.
If  q = -1, then  An+1 = -An. 
If  q < 1and A0 > 0, then » An+1 » >|An » and  limnØ¶  |qn A0 » = ¶.  The sequence oscillates.



è Compound interest: a problem leading to „
Let the initial amount of our money at the bank be M0, and let the annual interest  be p, that
is, our money at the end of the year is M1 = H1 + pL M0. Calculate the growth twice a year at
interest rate pÅÅÅÅÅ2 . Then, our money at the end of the year is M2 = H1 + pÅÅÅÅÅ2 L2 M0. It is easy to see
that  M2 >M1.  Count  the  growth  theee  times,  ...,  n-times  a  year.  We  obtain
Mn = H1 + pÅÅÅÅÅn Ln M0, and it can be proved that

 M0 < M1 < M2 < ... < Mn-1 < Mn.

Can our money grow unbounded? NO! The sequence 8Mn< is bounded. Since it is monoton
increasing and bounded (see the section  Definitions,...), the limit

 lim
nØ¶

 H1 + pÅÅÅÅÅn Ln

exists.  In particular, we introduce the following definition:

 DEFINITION 3.4.1  
The sequence H1 + 1ÅÅÅÅn Ln is bounded and monotone increasing. Its limit is called ‰.

‰:= lim
nØ¶

 H1 + 1ÅÅÅÅn Ln.

In more general,

‰:= lim
xØ¶

 H1 + 1ÅÅÅÅx Lx
= lim

xØ0
 H1 + xL 1ÅÅÅÅÅx .

The sequence H1 + 1ÅÅÅÅn Ln+1
 is bounded and monotone decreasing. Its limit is also ‰.

‰ = lim
nØ¶

 H1 + 1ÅÅÅÅn Ln.

An approximate value of ‰

NH„, 100L

2.718281828459045235360287471352662497757247093699959574966967
627724076630353547594571382178525166427

è Compound interest, continued
By the definition of ‰, we obtain that

 limnØ¶ Mn = limnØ¶ H1 + pÅÅÅÅÅn Ln M0 = M0  ‰p.

è Important remark
The  definition  is  not  used  to  approximate  ‰  since  the  convergence  is  very  slow.  Look  at
some members of the sequence
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TableForm@Table@82^n, N@a@2^nDD, N@ − a@2^nDD<, 8n, 1, 10<D,
TableHeadings −> 8None, 8"n", "aHnL", " −aHnL"<<D

n aHnL −aHnL
2 2.25 0.468282
4 2.44141 0.276876
8 2.56578 0.152497
16 2.63793 0.0803533
32 2.67699 0.0412917
64 2.69734 0.0209369
128 2.70774 0.0105428
256 2.71299 0.0052902
512 2.71563 0.00264983
1024 2.71696 0.0013261

A series approximation of form

aa@n_D := ‚
i=0

n 1

i!

is uncomparably faster (see the section Taylor polynomials).

TableForm@Table@8n, N@aa@nDD, N@ − aa@nDD<, 8n, 1, 10<D,
TableHeadings −> 8None, 8"n", "aaHnL", " −aaHnL"<<D

n aaHnL −aaHnL
1 2. 0.718282
2 2.5 0.218282
3 2.66667 0.0516152
4 2.70833 0.0099485
5 2.71667 0.00161516
6 2.71806 0.000226273
7 2.71825 0.0000278602

8 2.71828 3.05862×10−6

9 2.71828 3.02886×10−7

10 2.71828 2.73127×10−8

Problems and exercises

PROBLEM 3.4.1 Simple growth
Let the initial amount of bacteria be equal to A0, and it growes by d during every unit time
period. Calculate the population at the n'th time unit.  Calculate also the doublelife,  halflife,
and the time when the population dies out (if d < 0).

(1) A0 = 100; d = 10; n = 10;

(2) A0 = 500; d = 16; n = - 20;

(3) A0 = 1000; d = 30; n = 5;

(4) A0 = 200; d = -25; n = 7;
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PROBLEM 3.4.2  Geometric growth
Let  the  initial  amount  be  equal  to  A0,  and  the  growth  rate  in  a  unit  time   be  q,  that  is,
An+1 =q An . Calculate the n'th member. Calculate the doublelife and halflife. 

(1) A0 = 2; q = 0.5 ; n = 5;

(2) A0 = 10; q = -0.5; n = 4;

(3) A0 = 100; q = 0.9; n = 6;

(4) A0 = 500; q = -2; n = 5;

(5) A0 = 20; p = 2; n = 4;

PROBLEM 3.4.3  Geometric growth
Let the initial  amount of bacteria be equal to A0,  and the growth rate in time unit  be p  %.
Calculate the population at the n'th time unit. Calculate the doublelife and halflife. Can any
of these population die out?

(1) A0 = 2; p = 10; n = 5;

(2) A0 = 100; p = -20; n = 12;

(3) A0 = 2000; p = 5; n = 3;

(4) A0 = 500; p = -12; n = 5;

(5) A0 = 2000; p = 8; n = 4;

PROBLEM 3.4.4  
Using the theorems for limits and the definition of ‰, calculate the following limits.

(1) lim
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