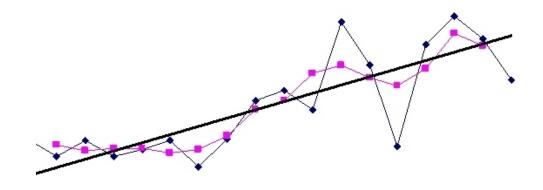
Teaching Mathematics and Statistics in Sciences, IPA HU-SRB/0901/221/088 - 2011 Mathematical and Statistical Modelling in Medicine

Author: Tibor Nyári PhD

University of Szeged Department of Medical Physics and Informatics www.model.u-szeged.hu www.szote.u-szeged.hu/dmi

Probability distributions



Random experiment

- The outcome is not determined uniquely by the considered conditions.
- For example, tossing a coin, rolling a dice, measuring the concentration of a solution, measuring the body weight of an animal, etc. are experiments.
- Every experiment has more, sometimes infinitely large outcomes

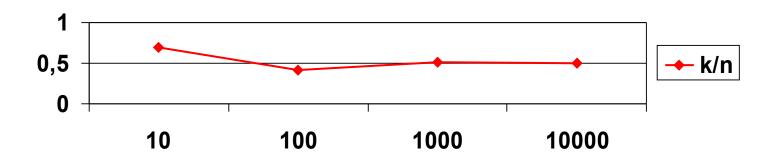
Event: the result (or outcome) of an experiment

- elementary events: the possible outcomes of an experiment.
- composite event: it can be divided into subevents.
- Example. The experiment is rolling a dice.
 - Elementary events are 1,2,3,4,5,6.
 - Composite events:
 - E1={1,3,5} (the result is an odd number).
 - E2={2,4,6} (the result is an even number).
 - E3={5,6} (the result is greater than 4).
 - $\Omega = \{1, 2, 3, 4, 5, 6\}$ (the result is the certain event).

Example: the tossing of a (fair) coin

		k: number of "head"s						
n=	10	100	1000	10000	1	00000		
k=	7	42	510		5005	49998		
k/n=	0.7	0.42	0.51	0	.5005			
0.49998								

P("head")=0.5



The concept of probability

- Lets repeat an experiment *n* times under the same conditions. In a large number of *n* experiments the event A is observed to occur *k* times $(0 \le k \le n)$.
- k : frequency of the occurrence of the event A.
- k/n : relative frequency of the occurrence of the event A. $0 \le k/n \le 1$

If *n* is large, k/n will approximate a given number. This number is called the probability of the occurrence of the event A and it is denoted by P(A). $0 \le P(A) \le 1$

Probability facts

- Any probability is a number between 0 and 1.
- All possible outcomes together must have probability 1.
- The probability of the complementary event of A is 1-P(A).

Rules of probability calculus

Assumption: all elementary events are equally probable

$$P(A) = \frac{F}{T} = \frac{\text{number of favorite outcomes}}{\text{total number of outcomes}}$$

Examples:

Rolling a dice. What is the probability that the dice shows 5?

If we let X represent the value of the outcome, then P(X=5)=1/6.

What is the probability that the dice shows an odd number?

P(odd)=1/2. Here F=3, T=6, so F/T=3/6=1/2.

Discrete (categorical) random variable

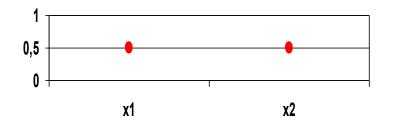
- A discrete random variable X has finite number of possible values
- The probability distribution of X lists the values and their probabilities:
 - Value of X: $x_1 x_2 x_3 \dots x_n$ Probability: $p_1 p_2 p_3 \dots p_n$

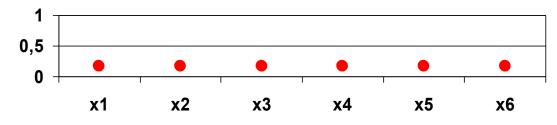
 $p_i \ge 0, p_1 + p_2 + p_3 \dots + p_n = 1$

Examples

- The experiment is tossing a coin.
 p₁ =0.5, p₂ =0.5
- The experiment is rolling a dice.

$$p_1 = 1/6, p_2 = 1/6, \dots, p_6 = 1/6$$

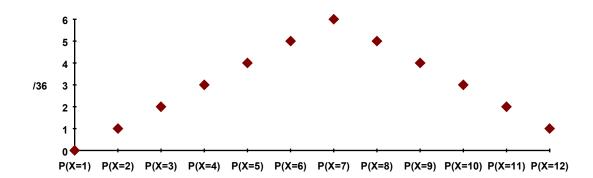




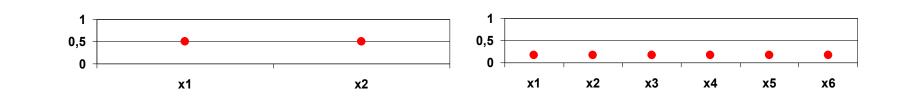
Example: rolling two dices

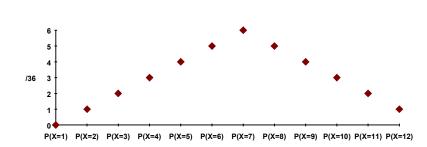
- Let random variable X be the sum of the two numbers shown on the two dices.
- P(X=1)=0, (X=1 is impossible)
- P(X=2)=1/36 (the only favourable event is (1,1), and the number of all possible event is 36.)

	j=1	j=2	j=3	j=4	j=5	j=6
i=1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
Χ	2	3	4	5	6	7
i=2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
X	3	4	5	6	7	8
i=3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
X	4	5	6	7	8	9
i=4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
Χ	5	6	7	8	9	10
i=5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
Χ	6	7	8	9	10	11
i=6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)
X	7	8	9	10	11	12



Uniform discrete distributions: all p_i-s are equal





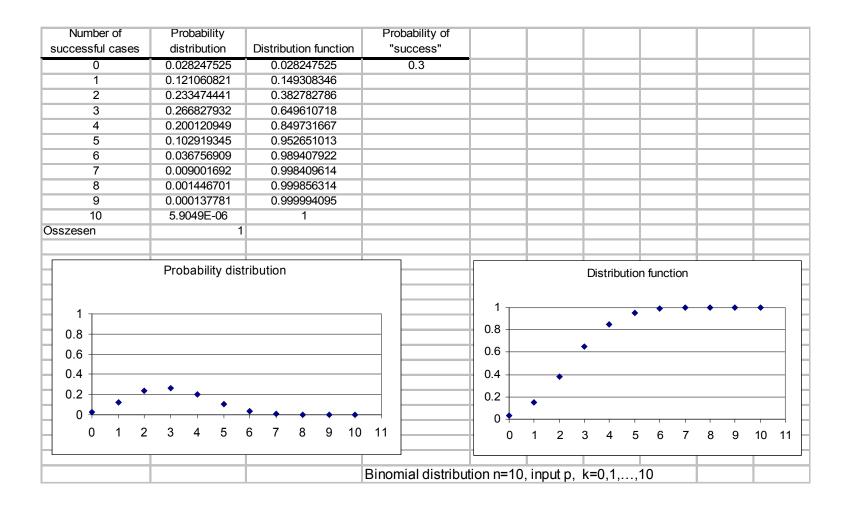
The binomial distribution

Let's consider an experiment A that may have only two possible mutually exclusive outcomes (success, failure)

■ Let P(**A**)=p

- We now repeat the experiment *n* times, let X denote the absolute frequency of the event *A*.
- The probability that X will assume any given possible value k is expressed by the binomial formula

$$P_k = P(X = k) = {n \choose k} p^k q^{n-k}, \ k = 0, 1, ..., n$$



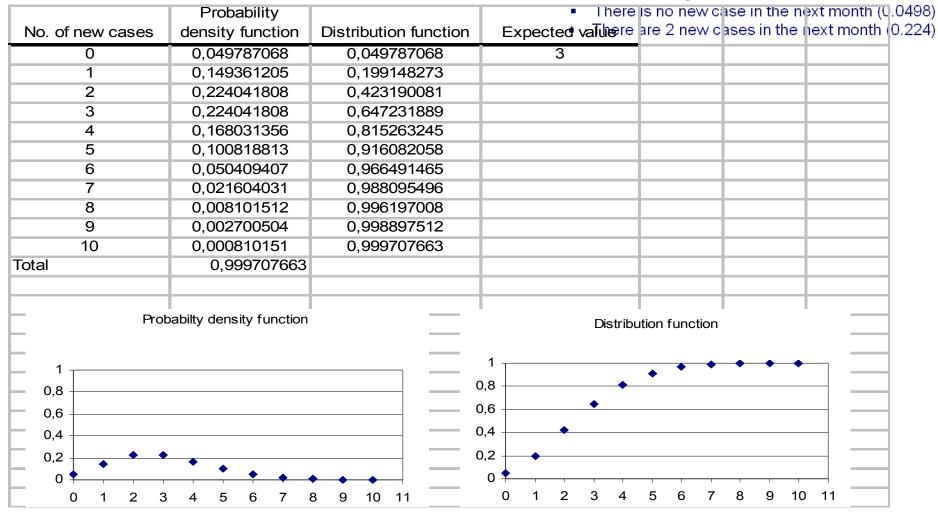
Poisson eloszlás – "ritka" események száma

Given a Poisson process, the probability of obtaining exactly successes in trials is given by the limit of a binomial distribution
 If n is huge and np=λ constant.

$$P(X = k) = f(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

- Viewing the distribution as a function of the expected number of successes
- λ is both the expected value and variance.

Eg:. Number of new cases diagnosed with a certain disease is 3 (in average). If the number of new cases follow Poisson distribution what is the probability



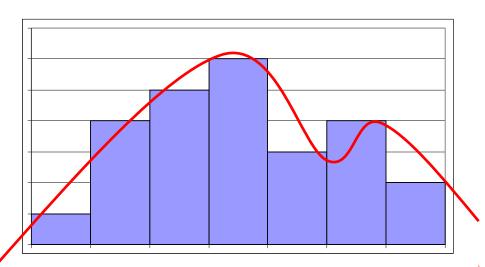
 Continuous random variable
 A continuous random variable X has takes all values in an interval of numbers.

- The probability distribution of X is described by a density curve.
- The density curve
 - is on the above the horizontal axis, and
 - has area exactly 1 underneath it.

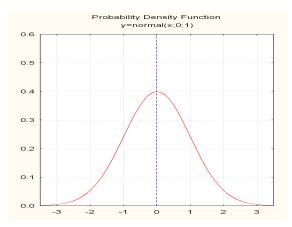
The probability of any event is the area under the density curve and above the values of X that make up the event.

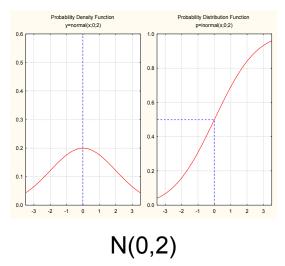
The density curve

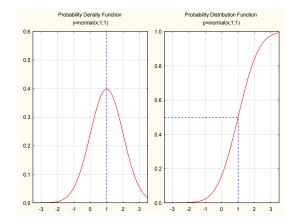
- The density curve is an idealized description of the overall pattern of a distribution that smooths out the irregularities in the actual data.
- The density curve
 - is on the above the horizontal axis, and
 - has area exactly 1 underneath it.
- The area under the curve and above any range of values is the proportion of all observations that fall in that range.



Normal distributions $N(\mu, \sigma)$



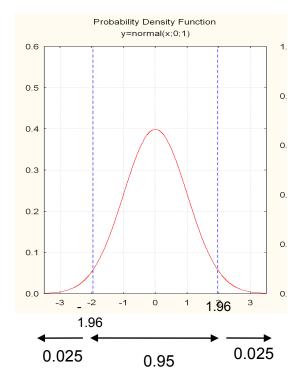




 μ , σ : parameters (a parameter is a number that describes the distribution)

Standard normal probabilities

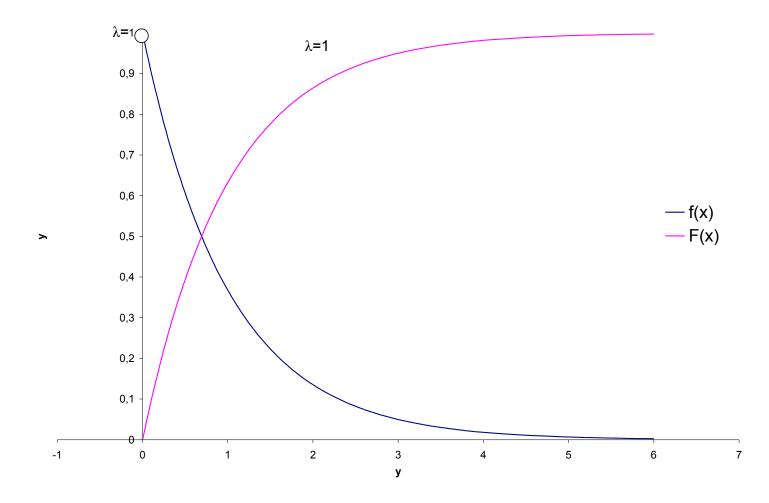
х	(x): proportion of area to the left of x
-4	0.0003
-3	0.0013
-2.58	0.0049
-2.33	0.0099
-2	0.0228
-1.96	0.0250
-1.65	0.0495
-1	0.1587
0	0.5
1	0.8413
1.65	0.9505
1.96	0.975
2	0.9772
2.33	0.9901
2.58	0.9951
3	0.9987
4	0.99997



Other continous distributions

- Exponential distribution
- Density function f(x)=λ e^{-λx}, if x > 0, otherwise
 0.
- λ is a constant parameter
- Distribution function $F(x)=1-e^{-\lambda x}$, if x > 0.

The exponential density and distribution function



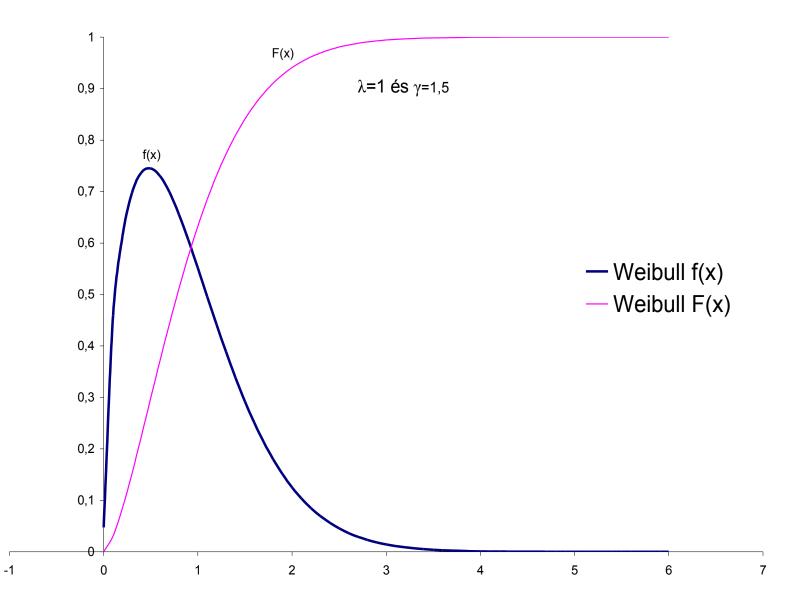
Weibull-distribution

Generalize the exponential (γ =1) distribution results in Weibull–distribution, density function (λ > 0 and γ > 0 are constants)

$$f(x) = \begin{cases} \lambda \gamma (x^{\gamma-1})e^{-\lambda x^{\gamma}} & ha \quad x \ge 0\\ 0 & ha \quad x < 0 \end{cases}$$

Weibull distribution function

$$F(x) = \begin{cases} 1 - e^{-\lambda x^{\gamma}} & ha \quad x \ge 0\\ 0 & ha \quad x < 0 \end{cases}$$



The f(x) is a probability density function (PDF) as $f(x) \ge 0$ and integrate using $(u=\lambda x^{\gamma}; du=\lambda \gamma x^{\gamma-1} dx)$]- $\infty; \infty$ [(improprius : $\beta \rightarrow \infty$) equals to 1

$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{\infty} \lambda \gamma x^{\gamma-1} e^{-\lambda x^{\gamma}} dx = \beta \lim_{\beta \to \infty} \left[-e^{-\lambda x^{\gamma}} \right]_{0}^{\beta} = 0 + 1 = 1.$$

A Weibull–distribution in pharmacocinetics

Example:

Calculate the area under Weibull PDF(λ=0.5 & γ=2) on] -∞ és 1] intervall (Note: this equivalent using [0 ; 1] intervall since the area under curve is 0 on]-∞ – 0[intervall)

Solution

$$\int_{-\infty}^{1} f(x) dx = \int_{0}^{1} \lambda \gamma x^{\gamma - 1} e^{-\lambda x^{\gamma}} dx = \left[-e^{-\lambda x^{\gamma}} \right]_{0}^{1} = -0,6065 + 1 = 0,3934.$$

The λ=0.5 and γ=2 Weibull-probability density function

