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Random experiment

 The outcome is not determined uniquely 
by the considered conditions.  

 For example, tossing a coin,  rolling a dice, 
 measuring the concentration of a solution, 
 measuring the body weight of an animal, 
etc. are experiments.

 Every experiment has more, sometimes 
infinitely large outcomes
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Event: the result (or outcome) of an experiment 

 elementary events: the possible outcomes of an 
experiment.

 composite event:  it can be divided into sub-
events.

 Example. The experiment is rolling a dice. 
 Elementary events are 1,2,3,4,5,6.
 Composite events: 

 E1={1,3,5}  (the result is an odd number).
 E2={2,4,6} (the result is an even number).
 E3={5,6} (the result is greater than 4).
 Ω={1,2,3,4,5,6} (the result is the certain event).
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Example: the tossing of a (fair) coin

k: number of „head”s
n= 10 100 1000 10000 100000
k= 7 42  510   5005 49998
k/n= 0.7 0.42 0.51 0.5005

0.49998
P(„head”)=0.5

0
0,5

1

10 100 1000 10000

k/n
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The concept of probability
 Lets repeat an experiment n times under the same 

conditions. In a large number of n experiments the event A 
is observed to occur k times (0≤ k ≤ n). 

 k  : frequency of the occurrence of the event A. 
 k/n  : relative frequency of the occurrence of the event A.

0≤ k/n ≤ 1
If n is large, k/n will approximate a given number. This 

number is called the probability of the occurrence of the 
event A and it is denoted by P(A). 

0≤ P(A) ≤ 1
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Probability facts

 Any probability is a number between 
0 and 1.

 All possible outcomes together must 
have probability 1.

 The probability of the complementary 
event of A is 1-P(A).
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Rules of probability calculus
 Assumption: all elementary events are equally probable 

Examples:
 Rolling a dice. What is the probability that the dice shows 5? 

 If we let X represent the value of the outcome, then P(X=5)=1/6.  
 What is the probability that the dice shows an odd number? 

 P(odd)=1/2. Here F=3, T=6, so F/T=3/6=1/2.

outcomesofnumbertotal
outcomesfavoriteofnumber

T
FP(A) ==
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Discrete (categorical) random variable

 A discrete random variable X has finite number 
of possible values

 The probability distribution of X lists the 
values and their probabilities:

Value of X: x1  x2  x3 … xn

Probability: p1  p2  p3 … pn

pi≥0, p1 + p2  +p3 … +pn =1
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Examples 
 The experiment is 

tossing a coin.
p1 =0.5, p2 =0.5

0
0,5

1

x1 x2 x3 x4 x5 x6

• The experiment is rolling a 
dice.
p1 =1/6, p2 =1/6,…, p6 =1/6

0
0,5

1

x1 x2
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Example: rolling two dices
 Let random variable X be the sum of the two numbers shown on the two dices.
 P(X=1)=0, (X=1 is impossible)
 P(X=2)=1/36 (the only favourable  event is (1,1), and the number of all possible 

event is 36. )
   j=1 j=2 j=3 j=4 j=5 j=6 

i=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 
X 2 3 4 5 6 7 

i=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 
X 3 4 5 6 7 8 

i=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 
X 4 5 6 7 8 9 

i=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 
X 5 6 7 8 9 10 

i=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 
X 6 7 8 9 10 11 

i=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 
X 7 8 9 10 11 12 

 

/36

0

1

2

3

4

5

6

P(X=1) P(X=2) P(X=3) P(X=4) P(X=5) P(X=6) P(X=7) P(X=8) P(X=9) P(X=10) P(X=11) P(X=12)
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Uniform discrete distributions: all pi-s are 
equal

0
0,5

1

x1 x2
0

0,5
1

x1 x2 x3 x4 x5 x6

/36

0

1
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3

4

5

6

P(X=1) P(X=2) P(X=3) P(X=4) P(X=5) P(X=6) P(X=7) P(X=8) P(X=9) P(X=10) P(X=11) P(X=12)

Not uniform
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The binomial distribution

 Let's consider an experiment A that may have 
only two possible mutually exclusive outcomes 
(success, failure)

 Let P(A)=p
 We now repeat the experiment n times, let X 

denote the absolute frequency of the event A. 
 The probability that X will assume any given 

possible value k is expressed by the binomial 
formula 

P P X k
n
k
p q k nk
k n k= = =







 =−( ) , , ,...,0 1
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Number of 
successful cases

Probability 
distribution Distribution function

Probability of 
"success"

0 0.028247525 0.028247525 0.3
1 0.121060821 0.149308346
2 0.233474441 0.382782786
3 0.266827932 0.649610718
4 0.200120949 0.849731667
5 0.102919345 0.952651013
6 0.036756909 0.989407922
7 0.009001692 0.998409614
8 0.001446701 0.999856314
9 0.000137781 0.999994095

10 5.9049E-06 1
Összesen 1

Binomial distribution n=10, input p,  k=0,1,…,10

Probability distribution

0
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Poisson eloszlás – „ritka” események száma

 Given a Poisson process, the probability of 
obtaining exactly   successes in   trials is 
given by the limit of a binomial distribution 

 If n is huge and np=λ constant. 

 Viewing the distribution as a function of the 
expected number of successes 

 λ is both the expected value and variance.

λλ −=== e
k

kfkXP
k

!
)()(
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No. of new cases
Probability 

density function Distribution function Expected value
0 0,049787068 0,049787068 3
1 0,149361205 0,199148273
2 0,224041808 0,423190081
3 0,224041808 0,647231889
4 0,168031356 0,815263245
5 0,100818813 0,916082058
6 0,050409407 0,966491465
7 0,021604031 0,988095496
8 0,008101512 0,996197008
9 0,002700504 0,998897512

10 0,000810151 0,999707663
Total 0,999707663

Probabilty density function
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Continuous random variable
 A continuous random variable X has 

takes all values in an interval of 
numbers.

 The probability distribution of X is 
described by a density curve. 

 The density curve 
 is on the above the horizontal axis, and
 has area exactly 1 underneath it.

 The probability of any event is the area 
under the density curve and above the 
values of X that make up the event.
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The density curve
 The density curve is an idealized 

description of the overall pattern 
of a distribution that smooths out 
the irregularities in the actual 
data. 

 The density curve 
 is on the above the horizontal 

axis, and
 has area exactly 1 

underneath it.
 The area under the curve and 

above any range of values is the 
proportion of all observations 
that fall in that range.
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Normal distributions N(µ, σ)
Probability Density Function

y=normal(x;1;1)

-3 -2 -1 0 1 2 3
0.0
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Probability Distribution Function
p=inormal(x;1;1)
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Probability Density Function
y=normal(x;0;2)

-3 -2 -1 0 1 2 3
0.0

0.1

0.2
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Probability Distribution Function
p=inormal(x;0;2)

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

N(0,1) N(1,1)

N(0,2)

µ, σ : parameters 
(a parameter is a number that 
describes the distribution)
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Standard normal probabilities
x (x): proportion of area to the left of x

-4 0.0003

-3 0.0013

-2.58 0.0049

-2.33 0.0099

-2 0.0228

-1.96 0.0250

-1.65 0.0495

-1 0.1587

0 0.5

1 0.8413

1.65 0.9505

1.96 0.975

2 0.9772

2.33 0.9901

2.58 0.9951

3 0.9987

4 0.99997

-
1.96

1.96

0.025 0.0250.95

19HUSRB/0901/221/088  „Teaching Mathematics and Statistics in Sciences:  Modeling and Computer-aided  Approach”



Other continous distributions
 Exponential distribution
 Density function f(x)=λ e-λx, if x > 0, otherwise 

0.
  λ is a constant parameter  
 Distribution function F(x)=1- e-λx, if x > 0.
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The exponential density and distribution 
function
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Weibull-distribution
 Generalize the exponential (γ =1) distribution 

results in Weibull–distribution, density 
function (λ > 0 and γ > 0 are constants) 
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Weibull distribution function
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λ=1 és γ=1,5

f(x)

F(x)
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The f(x) is a probability density function (PDF) as f(x)≥0 and integrate 
using   (u=λxγ ; du=λγ xγ-1 dx ) 
]-∞; ∞[(improprius : β→∞) equals to 1 

.110e xγ)(

0

0

λx1γ  limγ

=+=−
∞==∫ ∫ 



 −

∞

∞−

∞
−−

βγλ
βλ xdxdxxf e
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 A Weibull–distribution  in 
pharmacocinetics 

 Example:
 Calculate the area under Weibull PDF(λ=0.5 

&  γ=2) on ] –∞ és 1]  intervall (Note: this 
equivalent using [0 ; 1 ] intervall since the 
area under curve is 0 on ]–∞ – 0[ intervall)

26HUSRB/0901/221/088  „Teaching Mathematics and Statistics in Sciences:  Modeling and Computer-aided  Approach”



Solution

.3934,016065,0)(

1

0

1 1

0

1  =+−=−==∫ ∫ 



 −

∞−

−−
γλλ γ

γλγ xdxexdxxf ex
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The λ=0.5 and γ=2 Weibull-probability 
density function 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

λ=0,5 és γ=2

1

0,3934
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