Teaching Mathematics and Statistics in Sciences, IPA HU-SRB/0901/221/088 - 2011

Mathematical and Statistical Modelling in Medicine

Author: Tibor Nyári PhD

Types of Data

Examples to types of data

	data	The values (range) continuous	discrete(categorical)
Q		not possible	
u	Nominal		sex, country,
a			place of birth, profession, bloodgroup
t	Ordinal	subjective statements about intensity of different things (brightness, voice)	very good-good -acceptable - wrong - very wrong, low - normal - high, etc.
a			
t			
i			
v			
e			
	ative	temperature,	number of hospitals, children

- A data set contains information on a number of individuals.
- Individuals are objects described by a set of data, they may be people, animals or things. For each individual, the data give values for one or more variables.
- A variable describes some characteristic of an individual, such as person's age, height, gender or salary.

The data-table

■ Data of one experimental unit ("person") must be in one record (row)
■ Data of the answers to the same question (variables) must be in the same field of the record (column)
■ The variables (fields) are generally named by an 8 characters long identifier (e.g.:SPSS)
Number SEX AGE

1	1	20	\cdots	
2	2	17	\ldots	
	\cdot	\cdot	\ldots	

Statistical programsystems

- SPSS
- STATGRAPHICS
- SAS
- STATA
- SIGMASTAT
- BMDP
- SOLO
- CSS/STATISTICA
- STATXACT
- (EXCEL)

Distribution

- The distribution of a categorical variable describes what values it takes and how often it takes these values.
- The distribution of a continuous variable describes what values it takes and how often these values fall into an interval.
- Describing distributions with graphs:
- Categorical variables: bar chart, pie chart
- Continuous variable: histogram

The distribution of a categorical variable, example

Education categories:
1: <8 elementary
2: 8 elementary
3: secondary school
4: high school or university
Frequencies:

Frequency
< 8 elementary
8 elementary
secondary

The distribution of a continuous variable, example

Values:	Categories:
20.00	$0-10$
17.00	$10-20$
22.00	$20-30$
28.00	$30-40$
9.00	$40-50$
5.00	$50-60$
26.00	
60.00	
35.00	
51.00	
17.00	
50.00	
9.00	
10.00	
19.00	
22.00	
25.00	
29.00	
27.00	
19.00	

age in years

Histogram (Body weights)

Hisztogram

Jelenlegi testsúlya $/ \mathrm{kg}$ /

The overall pattern of a distribution:

- The center, spread and shape describe the overall pattern of a distribution.
- Some distributions have simple shape, such as symmetric and skewed. Not all distributions have a simple overall shape, especially when there are few observations.
- A distribution is skewed to the right if the right side of the histogram extends much further out then the left side.

Outliers

- Outliers are observations that lie outside the overall pattern of a distribution. Always look for outliers and try to explain them (real data, typing mistake or other).

[^0]
Describing distributions with numbers

- Measures of central tendency:
- the mean, the mode and the median are three commonly used measures of the center.
- Measures of variability :
- the range, the quartiles, the variance, the standard deviation are the most commonly used measures of variability .
- Measures of an individual:
- rank, z score

Measures of central tendency

- Mean: $\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{\sum_{k=1}^{n} x_{i}}{n}$
- Mode: is the most frequent number
- Median: is the value that half the members of the sample fall below and half above. In other words, it is the middle number when the sample elements are written in numerical order

Example

- The grades of a test written by 11 students were the following:
- 1001001006362601212620.
- A student indicated that the class average was 47 , which he felt was rather low. The professor stated that nevertheless there were more 100s than any other grade. The department head said that the middle grade was 60, which was not unusual.

Results

- The mean is $517 / 11=47$,
- the mode is 100 ,
- the median is 60 .

Relationships among the mean(m), the median(M) and the mode(Mo)

- A symmetrical curve

- A curve skewed to the right

Mo M m

- A curve skewed to the left

Measures of variability (dispersion)

- The range is the difference between the largest number (maximum) and the smallest number (minimum).
- The variance $s^{2}=\frac{\sum_{t=1}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$
- The standard deviations $=\sqrt{\frac{\sum_{k=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$

Example

Var 1	Var 2	Var 3
2	12	20
3	13	30
4	14	40
5	15	50
8	18	80
9	19	90
9	19	90
10	20	100
40	50	400
44	54	440
44	54	440
62	72	620
mean=20	mean=30	mean=200
SD=21,0971777	SD=21,0971777	SD=210,971777

Displaying data

- Categorical data
- barchart
- piechart
- Continuous data
- dot plot
- histogram
- box-whisker plot
- mean-standard deviation plot
- scatterplot

Bar chart and histogram

Discrete:

Continuous:

Histogram

age in years

Box-plot

How create a box-plot

- We need
- Median $\left(\mathrm{P}_{505 \%}\right), \mathrm{P}_{25 \%}$ and $\mathrm{P}_{75 \%}$
- Calculalate the differences of
- $\mathrm{d}_{1}=\mathrm{P}_{50 \%}-\mathrm{P}_{2 \%^{3}}$ and
- $\mathrm{d}_{2}=\mathrm{P}_{75 \%}-\mathrm{P}_{50 \%}$
- Then calculate $1.5 \times \mathrm{d}_{1}$ and $1.5 \times \mathrm{d}_{2}$.
- And plot

Mean and standard deviation

Box-plot vs Mean \pm SD plot

- Box-plot
- Give information about the symmetry
- Mean and standard deviation plot
- Could be used for normal distributed data

[^0]: Jelenlegi testsúlya

