8. Total examination of functions

Steps for the total examination of the function f(x)

- 1. Direct examination of f (x):
 - a. Determining the domain of definition (D_f) and continuity, finding points of discontinuity
 - b. Recognizing special properties (odd, even, periodic)
 - c. Intercepts: y-axis: $x=0 \Rightarrow y=f(0)$; x-axis: $y=0 \Rightarrow x$: f(x)=0 (solving equation if possible)
 - d. Determining (one-sided) limits at the endpoints of the domain (ex.: jump points, or $-\infty$ or $+\infty$)
- 2. Examination via the 1st derivative: $f'(x) \Rightarrow$ monotonity and local extrema of f(x)
 - a. Determining the derivative f'(x) (differentiation) and finding its domain
 - b. Finding critical points–I: break points (where f(x) is defined, but f'(x) is not)
 - c. Finding critical points–II: stationary points: solutions to equation f'(x)=0
 - d. Making a table: separating points are the critical/stationary points and the points of discontinuity. In the intermediate intervals the sign of f'(x) does not change and determines the increasing (+) or decreasing (-) property of f(x) and consequently, which critical point is a local extremum point. Substituting the latter into f(x) we obtain the local extremal values of the function (to be calculated).

3. Examination via the 2nd derivative: $f''(x) \Rightarrow$ convexity/concavity and inflexions of f(x)

- a. Possible points of inflexion: the solutions to equation f''(x)=0
- b. Making a table: separating points are: possible points of inflexion and points of discontinuity. In the intermediate intervals the sign of f''(x) does not change and determines the convex (+) or concave (-) property of f(x) and consequently, which

separating point is a point of inflexion. Substituting the latter into f(x) we obtain the *y*-coordinates of the inflexion points (to be calculated, if not too complicated).

4. Drawing the graph of the function *f*(*x*):

- a. Points of graph to be marked: axis-intercepts, local extrema (minimum and maximum points) and inflexion points; possibly one or two simply calculable points of f(x) (e.g., $x = \pm 1$, etc.).
- b. Connecting the previously marked points by a curve in such a way that the increasing / decreasing as well as the convex / concave properties in the intermediate intervals as determined in steps 2) and 3) are respected.
- c. Establishing the range of values (\mathbf{R}_{f}) for the function f(x) on the basis of the graph, respecting the local or global extrema and the limits at the ends of the domain.

PROBLEM 1

Do a total examination of the given function:

a) $2x^{2} + 3x - 2$ b) $x^{3} + 3x^{2}$ c) $x^{3} - 3x$ d) $2x^{3} - 9x^{2} + 12x$ e) $x^{4} - 4x^{3} + 4x^{2}$ f) $x + \frac{1}{x}$ g) $x - \frac{1}{x}$ h) $2x^{2} - \sqrt{x}$ i) $\frac{1}{1 - x^{2}}$ j) $\ln(4x - x^{2})$ k) $x - \ln x^{2}$ l) $\frac{x}{e^{x}}$ m) $\frac{e^{x}}{x}$ m) $\frac{e^{x}}{x}$ p) $x \ln x$

PROBLEM 2

Investigate the properties of the processes described by the following functions:

 $B \ge 0, \alpha > \beta > 0$

a) Logistic changes:
$$\frac{e^{\alpha x}}{A + Be^{\alpha x}}$$
; $\frac{1}{A + Be^{\alpha x}}$ $A, B, \alpha > 0$
b) Emptying and filling: $Ae^{-\alpha x}$; $A(1 - e^{-\alpha x})$ $A, \alpha > 0$
c) Normal distribution: e^{-x^2} ; $Ae^{-\frac{(x-m)^2}{D^2}}$
d) transfer, flow: $e^{-2x} - e^{-3x}$; $e^{-\alpha x} - e^{-\beta x}$; $Ae^{-\alpha x} - Be^{-\beta x}$ $A \ge 0$