Exercises in Mathematics for Pharmacy Students
 University of szeged - 2011

8.Total examination of functions

Steps for the total examination of the function $f(x)$

1. Direct examination of $f(x)$:
a. Determining the domain of definition $\left(\mathrm{D}_{f}\right)$ and continuity, finding points of discontinuity
b. Recognizing special properties (odd, even, periodic)
c. Intercepts: y-axis: $x=0 \Rightarrow y=f(0) ; x$-axis: $y=0 \Rightarrow x: f(x)=0$ (solving equation if possible)
d. Determining (one-sided) limits at the endpoints of the domain (ex.: jump points, or $-\infty$ or $+\infty$)
2. Examination via the $1^{\text {st }}$ derivative: $f^{\prime}(x) \Rightarrow$ monotonity and local extrema of $f(x)$
a. Determining the derivative $f^{\prime}(x)$ (differentiation) and finding its domain
b. Finding critical points-I: break points (where $f(x)$ is defined, but $f^{\prime}(x)$ is not)
c. Finding critical points-II: stationary points: solutions to equation $f^{\prime}(x)=0$
d. Making a table: separating points are the critical/stationary points and the points of discontinuity. In the intermediate intervals the sign of $f^{\prime}(x)$ does not change and determines the increasing (+) or decreasing (-) property of $f(x)$ and consequently, which critical point is a local extremum point. Substituting the latter into $f(x)$ we obtain the local extremal values of the function (to be calculated).
3. Examination via the $2^{\text {nd }}$ derivative: $f^{\prime \prime}(x) \Rightarrow$ convexity/concavity and inflexions of $f(x)$
a. Possible points of inflexion: the solutions to equation $f^{\prime \prime}(x)=0$
b. Making a table: separating points are: possible points of inflexion and points of discontinuity. In the intermediate intervals the sign of $f^{\prime \prime}(x)$ does not change and determines the convex $(+)$ or concave (-) property of $f(x)$ and consequently, which
separating point is a point of inflexion. Substituting the latter into $f(x)$ we obtain the y-coordinates of the inflexion points (to be calculated, if not too complicated).

4. Drawing the graph of the function $f(x)$:

a. Points of graph to be marked: axis-intercepts, local extrema (minimum and maximum points) and inflexion points; possibly one or two simply calculable points of $f(x)$ (e.g., $x= \pm 1$, etc.).
b. Connecting the previously marked points by a curve in such a way that the increasing / decreasing as well as the convex / concave properties in the intermediate intervals as determined in steps 2) and 3) are respected.
c. Establishing the range of values $\left(\mathrm{R}_{f}\right)$ for the function $f(x)$ on the basis of the graph, respecting the local or global extrema and the limits at the ends of the domain.

PROBLEM 1

Do a total examination of the given function:
a) $2 x^{2}+3 x-2$
b) $x^{3}+3 x^{2}$
c) $x^{3}-3 x$
d) $2 x^{3}-9 x^{2}+12 x$
e) $x^{4}-4 x^{3}+4 x^{2}$
f) $x+\frac{1}{x}$
g) $x-\frac{1}{x}$
h) $2 x^{2}-\sqrt{x}$
i) $\frac{1}{1-x^{2}}$
j) $\ln \left(4 x-x^{2}\right)$
k) $x-\ln x^{2}$
l) $\frac{x}{e^{x}} \quad$ m) $\frac{e^{x}}{x}$
m) $\frac{e^{x}}{x}$
n) $x e^{x}$
o) $x e^{-x^{2}}$
p) $x \ln x$

PROBLEM 2

Investigate the properties of the processes described by the following functions:
a) Logistic changes: $\frac{e^{\alpha x}}{A+B e^{\alpha x}} ; \frac{1}{A+B e^{\alpha x}} A, B, \alpha>0$
b) Emptying and filling: $A e^{-\alpha x} ; A\left(1-e^{-\alpha x}\right) A, \alpha>0$
c) Normal distribution: $e^{-x^{2}} ; A e^{-\frac{(x-m)^{2}}{D^{2}}}$
d) transfer, flow: $e^{-2 x}-e^{-3 x} ; e^{-\alpha x}-e^{-\beta x} ; A e^{-\alpha x}-B e^{-\beta x} A \geq B \geq 0, \alpha>\beta>0$

