Exercises in Mathematics for Pharmacy Students
 University of szeged - 2011

1. Elementary problems

1.1. Concentration of a solution

If a solution of mass m contains dissolved material (solute) of mass μ, then the concentration of the solution is: $c=\frac{\mu}{m}$. When specifying a solution generally the total mass (m) and the concentration expressed in percents $(c=100 c \%)$ are given, from these, however, it is easy to calculate the mass of solute (dissolved material): $\mu=c \cdot m$, as well as the mass of solvent: $m-c \cdot m=(1-c) m . \quad$ Ex.: in $\quad 2 \mathrm{~kg} \quad$ salt solution of concentration $15 \% \quad(m=2 \mathrm{~kg}$, $c=15 \%=15 / 100=0.15$) the mass of dissolved salt is: $c m=0.15 \cdot 2 \mathrm{~kg}=0.3 \mathrm{~kg}$, the mass of water (solvent) is: $2 \mathrm{~kg}-0.3 \mathrm{~kg}=1.7 \mathrm{~kg}$.

Concentration of a mixture. When mixing two solutions we can use the following notation:

	total mass	concentration	mass of solute
$\mathbf{1}^{\text {st }}$ solution:	m_{1}	c_{1}	$c_{1} m_{1}$
$\mathbf{2}^{\text {nd }}$ solution:	m_{2}	c_{2}	$c_{2} m_{2}$
mixture:	m	c	c m

By the law of mass conservation the masses add up when mixing, therefore $m=m_{1}+m_{2}$, and $c m=c\left(m_{1}+m_{2}\right)=c_{1} m_{1}+c_{2} m_{2}$, from which we can calculate the concentration of the mixture: $c=\frac{c_{1} m_{1}+c_{2} m_{2}}{m_{1}+m_{2}}$

PROBLEM 1 CONCENTRATION OF SOLUTIONS, MIXTURE PROBLEMS

- How much solute (dissolved material) and solvent is needed to make $8 \mathrm{~kg} \mathrm{30} \mathrm{\%}$ solution?
- What is the concentration of 15 kg solution containing 8 kg solute?
- How much water should be added to 6 kg salt, to prepare a 25% concentrated solution?
- How much salt should be dissolved in 700 g water to obtain a 15% solution?
- We have $1.5 \mathrm{~kg} 90 \%$ concentrated alcohol. How much water do we need to dilute it to 50% ?
- After adding salt to $4.5 \mathrm{~kg} \mathrm{20} \mathrm{\%}$ solution, the concentration rises to 30%. What will be the mass of the obtained 30% solution?
- We mix $3 \mathrm{~kg} 40 \%$ solution with $5 \mathrm{~kg} 12 \%$ solution. What will be the concentration of the mixture?
- We have $2.5 \mathrm{~kg} \mathrm{5} \mathrm{\%}$ solution. How much 20% solution should be mixed to it to get a 12% concentrated solution?
- What amounts of 10% and 25% solutions should be mixed to get $2 \mathrm{~kg} 20 \%$ solution?
- What amounts of 10% and 25% solutions should be mixed to get $3.5 \mathrm{~kg} \mathrm{35} \mathrm{\%}$ solution?
- After mixing $250 \mathrm{~g} \mathrm{25} \mathrm{\%}$ solution with 100 g solution of unknown concentration we obtain a 20% concentrated mixture. What was the unknown concentration?
- In what ratio should we mix 15% and 40% concentrated solutions in order to obtain a 30% concentrated mixture?

Results

1. 2.4 kg solute has to be dissolved in 5.6 kg solvent 2. $c=8 / 15=53.3 \% \quad$ 3. 18 kg water
2. 123.5 g salt
3. 1.2 kg water
4. $m=5.14 \mathrm{~kg}$
5. $c=0.225=22.5 \%$
6. We have to add
0.9375 kg of 20% concentrated solution
7. we have to mix $2 / 3 \mathrm{~kg}$ of 10% and $4 / 3 \mathrm{~kg}$ of 25% concentration 10. no solution (impossible) 11. the unknown concentration was: $0.075=7.5 \%$ 12. we mix in a ratio of $2 \div 3$, that is, 2 parts of the 15% concentrated with 3 parts of the 40% concentrated solution

1.2. Equations of straight lines - linear ($1^{\text {st }}$ degree) functions

Normal equation of a straight line: $y=a x+b$, where $a=$ slope, $b=y$-intercept
Factorized equation of a straight line: $y=a\left(x-x_{0}\right)$, where $x_{0}=-\frac{b}{a}=x$-intercept, root (zero)

Equation of the straight line passing through the point $\left(x_{1}, y_{1}\right)$ with slope a :
$y=a\left(x-x_{1}\right)+y_{1}$
Equation of a straight line passing through two given points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:
first calculate the slope: $a=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}$,
then substitute into the previous point-slope equation.
Given two straight lines' normal equations: $y=a_{1} x+b_{1}$ and $y=a_{2} x+b_{2}\left(a_{1}, b_{1}, a_{2}\right.$, b_{2} given);
the two lines are parallel, if $a_{1}=a_{2}$, are perpendicular, if $a_{1} a_{2}=-1$, furthermore the coordinates of their intersection point are the two solutions of the system of their equations with two unknowns (x and y).

PROBLEM 2 EqUATIONS OF STRAIGHT LINES - LINEAR (1 ${ }^{\text {ST }}$ DEGREE) FUNCTIONS

- Give the equation of the straight line passing through the given point $\left(x_{1}, y_{1}\right)$ with slope a, determine the x-and y-intercepts, and draw the graph of the line including all points involved (the given point and the two intercept points):
a) $\left(x_{1}, y_{1}\right)=(0,0)$ and $a=2$
b) $\left(x_{1}, y_{1}\right)=(0,1)$ and $a=-2$
c) $\left(x_{1}, y_{1}\right)=(-3,2)$ and $a=-1 / 2$
d) $\left(x_{1}, y_{1}\right)=(10,0)$ and $a=-3$
e) $\left(x_{1}, y_{1}\right)=(1,1)$ and $a=-1$
f) $\left(x_{1}, y_{1}\right)=(-3,-2)$ and $a=3 / 4$
- Determine the equation and the intercepts of the straight line passing through the two given points and make a graph:
a) $(0,0)$ and $(-3,-2)$
b) $(0,10)$ and $(10,0)$
c) $(-1,-1)$ and $(2,3)$
d) $(3,4)$ and $(4,3)$
e) $(-2,2)$ and $(10,2)$
f) $(-1,-1)$ and $(-1,3)$
- Determine the equation and the intercepts (and do the graph) of the straight line passing through the point $(1,1)$, which satisfies the additional condition:
a) the x-intercept is $x_{0}=5$
b) the y-intercept is $b=-3$
c) it is parallel to the line $3 x-2 y=4$
d) it is perpendicular to the line $x+2 y=4$
- Find the coordinates of the intersection point of the two straight lines and make a graph including both lines and all the points involved:
a) $3 x-2 y=4$ and $x+2 y=4$
b) $x+y=2$ and $x-y=-1$
c) $2 x+y=0$ and $4 x+2 y=-1$

1.3. Equations of parabolas - quadratic ($2^{\text {nd }}$ degree) functions

Normal equation: $y=a x^{2}+b x+c$, where $a=$ main coefficient $(\neq 0), c=y$-intercept Peak-point equation: $y=a\left(x-x_{0}\right)^{2}+y_{0}$, where $x_{0}=-\frac{b}{2 a}$ and $y_{0}=c-\frac{b^{2}}{4 a}$ are the coordinates of the peak-point of the parabola (obtained from normal equation by completing the square)

Factorized equation: $y=a\left(x-x_{1}\right)\left(x-x_{2}\right)$, where x_{1} and x_{2} are the x-intercepts, that is, the roots (zeros) of the quadratic function: $x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

PROBLEM 3 EqUATIONS OF PARABOLAS - QUADRATIC ($2^{\text {ND }}$ DEGREE) FUNCTIONS

- Determine the peak-point equation and (if exists) the factorized equation of the parabola given by the following equation. Also give its notable points (x - and y-intercepts, peak-point), and make a graph!
a) $y=-x^{2}-5$
b) $y=10 x^{2}-50 x$
c) $y=x^{2}-4 x+3$
d) $y=2 x^{2}-4 x+2$
e) $y=2 x^{2}-10$
f) $y=-x^{2}+x-1$
g) $y=-0.5 x^{2}+x-2$
h) $y=-2 x^{2}+7.5 x+2$

Note: to make a graph is always a must! The graph should always contain all geometric objects (point, straight line, parabola) involved in the problem. In case of sketching the graph of a function all notable points should be marked. Along the x - and y-axes of the coordinate system, the scale (often integer numbers) must be given detailed enough to cover the range of the graphed objects.

PROBLEM 4 ELSE: GRAPHING THE AbSOLUTE VALUE ($|x|)$, SIGN (sIGNUM) AND RECIPROCAL

(HIPERBOLA) FUNCTIONS
a) $y=|x| \equiv\left\{\begin{array}{r}-x, \text { if } x<0 \\ 0, \text { if } x=0 \\ x, \text { if } x>0\end{array}\right.$
b) $y=\operatorname{sgn} x \equiv\left\{\begin{array}{r}-1, \text { if } x<0 \\ 0, \text { if } x=0 \\ 1, \text { if } x>0\end{array}\right.$
c) $y=1 / x$

PROBLEM 5 Graphical exercies

Which curve (find such pieces!) represents a graph of a function, or one-to-one function?

(2)

(3)

(4)

(5)

