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Preface

The purpose of my thesis is to model a so-called Cheyne-Stokes respiratory ailment
using delay differential equations. Based on the paper [1], we present the theoretical
as well as computer-aided investigations of the model. An important aim of our
work is the development of tools in Wolfram Mathematica to study the stability
properties and the linearization method of delay differential equations.

o On the biological relevance of differential delay equations

The use of ordinary and partial differential equations to model biological systems
has a long history, dating to Malthus, Verhulst, Lotka and Volterra. As these models
are used in an attempt to better our understanding of more and more complicated
phenomena, it is becoming clear that the simplest models cannot capture the rich
variety of dynamics observed in natural systems. There are many possible
approaches to dealing with these complexities.

On one hand, one can construct larger systems of ordinary or partial differential
equations, i.e., systems with more differential equations. These systems can be quite
good at approximating observed behavior, but they suffer from the downfall of
containing many parameters, often signifying quantities which cannot be determined
experimentally. Furthermore, obtaining an intuitive sense of which components are
most important in determining a behavior regime can be quite difficult.

Another approach which is gaining prominence is the inclusion of time delay terms
in the differential equations. After the First World War, the development and use of
automatic control systems resulted in studies of an entirely different class of differen-
tial equations these so-called delay differential equations or difference-differential
equations. A time delay arises because a finite time is required to sense information
and then react to it. The delays or lags can represent gestation times, incubation
periods, transport delays, or can simply lump complicated biological processes
together, accounting only for the time required for these processes to occur. Such
models have the advantage of combining a simple, intuitive derivation with a wide
variety of possible behavior regimes for a single system. On the negative side, these
models hide much of the detailed workings of complex biological systems, and it is
sometimes precisely these details which are of interest.

Various problems, primarily taken from many branches of biological sciences
literature motivate our study of delay differential equations. It has been applied by
Nicholson's careful experimental data for the Australian sheep-blowfly equation
(1957). The Mackey-Glass model (1977) concerned with the regulation of
haematopoiesis, the formation of blood cell elements in the body. Movement control
in Parkinson's disease was studied by A. Beuter, J. G. Milton, C. Labrie, and L.
Glass (1990). Furthermore, the model of the pupil light reflex is given by J.G. Mil-
ton (2003). Delay models have been commonly used for describing several aspects
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of infectious disease dynamics: primary infection, drug therapy and immune
response, to name a few. Delays have also appeared in the study of physiology,
chemostat models, circadian rhythms, economics, epidemiology, the respiratory
system, tumor growth and neural networks.

We have two goals with subject of mathematical biology papers: to bring to the
attention of theoreticians an example from medicine of complex and poorly under-
stood dynamics; and to show that simple mathematical models of physiological
systems predict the existence of regimes of periodic dynamics, similar to those
encountered in human disease.

o The structure of the thesis

Below we summarize the content of chapters of the thesis. In the first chapter we
construct a model taking notice of biological aspects of the problem using Hill
function. As a first step of additional work we introduce nondimensional quantities
to reduce number of paramerets and simplify notations.

The second chapter concerns the existence of steady states of the equation. In addi-
tion, the linearization method of ordinary and delay differential equations are
explained besides the relevant stability theorems.

Then, in the third chapter we examine the stability of equlibria depending on parame-
ters. The bifurcation conditions of asymptotic stability are also computed. A com-
plex figure closes this section which supports the theoretical expectations.

In the fourth chapter we give tips for interactive experiments showing typical fea-
tures of the problem.

Finally, we summarize our results by comparing the experimental and computer
simulated behaviours.

This thesis is an interactive Mathematica document which enables the reader doing
dynamic experiments. It is available on the web portal www.model.u-szeged.hu.

The required Wolfram CDF-Player can be installed from the attached CD or
www.wolfram.com/cdf-player/.
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1. Problem: Cheyne-Stokes respiration

The Cheyne—Stokes respiration, is a human respiratory ailment manifested by an
alteration in the regular breathing pattern. Here the amplitude of the breathing pat-
tern, directly related to the breath volume — the ventilation /' — regularly waxes
and wanes with each period separated by periods of apnea, that is where the volume
per breath is exceedingly low.

1 Litre

Volume per breath

A L A ! i 1 Il i

0.5 1.0 1.5 2.0 2.5 3.0
Time (minutes)

i

o

Figure 1. Typical of spirograms of those suffering from Cheyne—Stokes respiration

We first need a few physiological facts for our model. The level of arterial carbon-
dioxide (CO,), c(¢) say, is monitored by receptors which in turn determine the level
of ventilation. It is believed that these CO, - sensitive receptors are situated in the
brainstem so there is an inherent time lag, T say, in the overall control system for
breathing levels. It is known that the ventilation response curve to CO, is sigmoidal
in form. We assume the dependence of the ventilation V' on ¢ to be adequately
described by what is called a Hill function, of the form below where V., is the
maximum ventilation possible and the parameter a and the Hill coefficient m are
positive constants which are determined from experimental data.

c"(t—1)

V="Vn (1)

ax
am"+c"t-1)

concentration

time

Figure 2. Hill function with m = 5, a = 2, Viyax = 1, T = 0 parameters



E. Badnhegyi On a delay model of Cheyne-Stokes respiration: Computer-aided study

We assume that the removal of CO, from the blood is proportional to the product of
the ventilation and the level of CO, in the blood. Let p be the constant metabolic
production rate of CO; in the body. The dynamics of the CO, level is then modelled
by

de@®) _

O = p=bVet) = p—b Viax () = 2)

a"+c"(t-1)°

where b is a positive parameter which is also determined from experimental data.
The delay time 7 is the time between the oxygenation of the blood in the lungs and
monitoring by the chemoreceptors in the brainstem. The justification for equation
(2) is heuristic: the equation reproduces certain qualitative features of both normal
and abnormal breathing.

As a first step in analysing (2) we introduce the nondimensional quantities

X = f—l, [— p;t, ™ = pa_T, a= a—b;max’
S 3)
T Vo
and the model equation becomes x' (¢) = 1 — a x(¢) %,
x'(O)=1-ax@Vix(t-1), (4)

where for notational simplicity we have omitted the asterisks on #, T and V.

2. Steady states

2.1. Searching for steady states

We get an indication of the dynamic behaviour of solutions by investigating the
linear stability of the steady state xy given from (4) by

X" @ X V()CO) =& Xy Vo, (5)

xX')=0=l=«a T =

where V), defined by the last equation, is the dimensionless steady state ventilation.

THEOREM 1
There exists a unique steady state for x' (t) = 1 —a xy Vy ([1] p. 23).

PROOF

Since ﬁ monotonically tends to zero and V'(xp) is sigmoid, and increasing to 1, as
0
Xo — oo, equation ﬁ = V(xp) has exactly one positive solution, being the unique
0

positive steady state. See the illustation below.
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Figure 3. Existence of steady state

Determining adequately many intersection points we can frame a surface to the
steady states in a function of @ and m.

Figure 4. Surface of the steady states

2.2. On the method of linearization

The case of ODE’s

Consider the following nonlinear autonomous differential equation system
X'(0) = F(X@). (6)

It is often impossible to write down explicit solutions of a nonlinear differential
equation. The one exception to this occurs when we have equilibrium solutions.
Provided we can solve the algebraic equations, we can write down the equilibrium
explicitly. Often, these are the most important solutions of a particular nonlinear
system. More importantly, we can usually use the technique of linearization to
determine the behavior of solutions near equilibrium points.

We assume that F: D - R” is continuously differentiable and D c R” is open. Let
X() =Xy eR"”, teR is a steady-state solution of (6) if and only if F(X,*) =0,

-8-
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where Xy* € R” is the constant function equal to Xj. If X(¢) is a solution of (6) and
X () = Xy + U(t) then U(r) satisfies U' (¥) = F(Xo* + U(f)). We want to understand
the the behavior of solutions of the last equation for solutions that start near U = 0.
We assume that F(Xy*+ U) = L(U)+ G(U), U € R” where L:R"” - R" is a linear

function and G :R” —» R” is “higher order” in the sense that % - 0, U - 0. This

means that for every €>0 there  exists ¢6>0 such that
|U]| = ¢ implies |G(U)| < € U.

The approximation of F' with its Taylor series around X, gives functions L and G.
The linear system U'(¢) = L(U(?)) is called the linearized (or variational) equation
about the equilibrium Xj*. The theorem below says the relationship between nonlin-
ear and linearized systems [3] p. 151.

THEOREM 2

Consider the system X ' = F(X) where F is C. Suppose
1. X(¢) is a solution of X' = F(X), which is defined for all t € [a, B] and satisfies

X(tg) = Xo,

2. U(t) is the solution to the variational equation along X(t) that satisfies
Ultg) = Uy,

3. Y(?) is the solution of X' = F(X) that satisfies Y(ty) = Xy + U).

Then

Y@ - (X0 + U@ 0

im
Uo=0 |Tol
uniformly int € [a, B].

Given any nonlinear system of differential equations X' = F(X) with an equilibrium
point at X,, we may consider the variational equation along this solution. But DF x,
is a constant matrix 4. The variational equation is then U'= L(U), which is an
autonomous linear system. This system is called the linearized system at Xy. We
know that flow of the linearized system is e’ U, so the result above says that near
an equilibrium point of a nonlinear system, the phase portrait resembles that of the
corresponding linearized system. We will make the term resembles more precise in
the next theorem of linearization [3] p.168.

THEOREM 3

Suppose that the n-dimensional system X' = F(X) has an equilibrium point at X,
that is hyperbolic. Then the nonlinear flow is conjugate to the flow of the linearized
system in a neighborhood of X).
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The case of DDE'’s

Consider the delay case of (6) x' () = f(x(?), x(t — 7)) assuming that f/: DxD - R is
continuously differentiable and D c R is open. If f(xg, xo) =0 for some xo € D,
then x(¢) = x9, ¢t € R is an equilibrium solution. If we now consider small perturba-
tions about the steady state xo we write u = x — xo and consider |u| small. We approxi-
mate f with its multivariate Taylor series around (x(, x¢). Denote x and y the varia-
tion of / for a moment:

S, ¥) = f(x0, x0) +J (xX0)-(u®), u(t—1)) + O(u?). (7)

where  J(xo) = (0.f, 0, f)(x0, xo). Hence, the Ilinearized equation is
u' (£) = J(xo).(u(@®), u(t—1)).

2.3. Linearization of our DDE

Applying the above general method to equation x'(f) = 1 —ax(¢) V(x(t—1)), we
have fx, y)=1—-axV(y), and the partial derivatives are
Ox [, 0y 1) (x0, X0) = (—a V(xq), —a xo V' (x0)). It follows that the linearized equa-
tion is

u' @) =Au@®)+Bu(t—-1). (8)

where A = —a V(xg) <0, B=—axy V' (xg) <0.

We look for solutions in the form u(f) « €'’ as in the ordinary case. Substituting it
to (8) we get Ae'' = At + B e, Simplifing both sides with the positive e,
the characterstic equation - which is transcendental - is

A=A+Be". 9)

As an observation, & defined by #(d)=A—-A4—Be 7, is an analytic function
defined for all A € C, that is, an entire function, analytic in the entire complex plane.
Properties of nontrivial entire functions, in particular of 4, are listed below :

Each characteristic root has finite order.
There are at most countably many characteristic roots.
The set of characteristic roots has no finite accumulation point.

Consider the characteristic equation (9). By product both sides with e'™ and rearrang-
ing we get a so-called product logarithm or Lambert W function B = (A — 4) 7.

There are 4 kinds of solution to this equation respect to A: B=—-4and A=0,7=0
and A=A4+B,7+0and B=0 and A = 4, c € Integers and 7+ 0 and B1 # 0 and
A=

A t+ProductLog[c,B e 7 . . : .
r+ProduetbogleBe T T With conditions on A, B and 7 the fourth expression give

us the eigenvalues.

-10 -
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Figure 5 shows some characterstic roots of equation (9) depending on the parame-
ters, where n denotes the n™ solution of the above mentioned product logarithm
function. Notice that roots come in complex conjugate pairs (see [2] p. 47).

A D Im A
B . 40 1

30
. 20 L

n —{3— ’ 10}

8 Re)
~3.5-3.0-2.5-2.0-1.5-1.0-0.5
“10¢
. 20"
‘ _30°¢

Figure 5. Some roots of the characteristic equation
The following theorem ([2] p. 55) can be formulated:

THEOREM 4

Let h(L) = 0 denote the characteristic equation corresponding to (8) and suppose
that p := maxu=0 Re A < 0. Then xy* is a locally asymptotically stable steady state

of (4). In fact, there exists 0 > 0 such that

Ho't

Hol
[l — xp*|| <0 = ||x(t +u) — xp*|| = K ||lu—x¢*||e 2, t=0.

If Re A > 0 for some characteristic root, then xy* is unstable.

3. Stability of equlibrium

3.1. On the general equation u'(t) = Au(t) + Bu(t — 1)

We obtain a complete picture of the characteristic roots associated with the lin-
earized equation u'(f) = Au(t) + Bu(t — 7) in the case that 4 and B are real
scalars. As we got before, the characteristic equationis A = A+ Be ™",

Taking A = u + iv, Eulers’s formula gives

u=A+Be * cosvt
v=—-Be *Tsinvr

(10)
Observe that A = 0 is a root precisely when 4 + B = 0, see Figure 6 below.

Define the function F(A, 4, B) :=A—A—Be ™ whose zeros are the roots of (9).
One of our main tasks in determining the stability of an equilibrium solution is to

-11 -
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understand the characteristic roots of an analytic characteristic equation 4(A) = 0. In
practice, there are usually important parameters, such as the delay, and we would
like to know how the roots vary with the parameters. Therefore, we must study the
roots A of the equation A(A, p) = 0 where p denotes a vector of usually real parame-

ters. For solutions (1¢, 4o, By) of (9), the implicit function theorem guarantees a
smooth root A = A(A4, B) for (4, B) near (4, By).

Setting u = 0 in (10) and solving for @ and S gives the “neutral stability curves” in
parameter space along which (9) has purely imaginary roots A = i v.

Multiply by 7 will simplify our notations, let z=A71, a =471, B=B71, y=vT1to
obtainz=a+ e .

As roots come in complex conjugate pairs, we may restrict y = 0. Notice that the
curve is well-defined at y =0 where (@, ) = (1, —1), which coincides with the
parameter values at which z = 0 is a double root. (By the way, there are no roots of
order three or higher. [2] p. 58.) We denote the curve by

: ),Osy<7r}

sin y

Coi={(@ p=(y=L, -y

siny’
along which z = iy, 0 < y < & are roots. It is depicted in Figure 6 below. Calcula-
tions give

da

M
& <0, B <0, 0<y<nm

so both a(y), B(y) decrease with increasing y. Starting from (1, —1) when z=10,
(a(y), B(»)) meets the B-axis at (0,721) when z = ;—r It then enters the third quadrant

and approaches (—oo0, o0) from below and tangent to the line @ =  as y /' 7 because

% = — cos(y) » 1 whereas both @, § - —o0 as y / 7.We also need to consider the

curves

Cn::{(cy,ﬁ):(ym -y ! ),nﬂsy<(n+l)7r}, n=l1,

siny’ sin y

where z=+iy, nn<y<(m+1)n, are roots. Notice that (—1)"siny>0 on
n7r<y<(n+l)ﬂso(—1)"+1ﬁ>00nC,,butachangessignaty:nn+§.OnCn,

Z—;y <0 but % changes sign on (nm, (n+1)m), where tany=y. Because
B 1
a cosy’

B =la| and C,, Cy4, ... lie strictly below the graph of S = —|¢] .

g| > 1 on C, implying that C, Cs, ... lie strictly above the graph of

It is easy to see that C;,,; lies strictly above C;,_; for n =1, 2, ... and that C; (1)
lies strictly below C,, for n =1, 2, .... C,, never meets Cy, the line a+ =0, nor

the open region enclosed by these two curves.

-12 -
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B
N\
10+ — C()
| — a+p=0
20  -10 10 20
— C,,n=1,....5
10\

Figure 6. Neutral stability curves

THEOREM 5

All roots of (9) have Red < 0 for (a, B) belonging to the open region bounded
below by curve Cy and bounded above by curve {(a, B): B = —a, a < 1} which meet
at (a, B) =1, —1). See Figure 6. At least one root satisfies Red >0 for (a, )
belonging to the open complementary region on the right. [2] p. 52

Now let’s return to our original problem of determining the stability of the steady
state u = 0 of linearized equation (8) which depends on characteristic equation (9).
We assume that 4 + B # 0 for otherwise A =0 is a root. The theorem below states
stability conditions for the variational equation [2] p. 53:

THEOREM 6
The following hold for (8):
(a) If A +B >0, then u = 0 is unstable.
(b)If A+B < 0and B = A, then u =0 is asymptotically stable.
(c)If A+B <0 and B < A, then there exists 7. > 0 such that u = 0 is asymptoti-

cally stable for 0 < v < 7. and unstable for v > 7.

In case (c), there exist a pair of purely imaginary roots at T, = 1 1 y

Nl

-13 -
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3.2. The special case of Cheyne-Stokes respiration

We found above that if the solution A of the characteristic equation with the largest
real part is negative, then the steady state is asympotically stable. Hence we are
concerned with the oscillatory nature of the disease we are interested in parameter
ranges where the steady state is unstable and, in particular, unstable by growing
oscillations in anticipation of limit cycle behaviour. So, we must determine the
bifurcation values of the parameters such that Re A = 0.

Simultaneous solutions of (10) give u and v in terms of 4, B and 7 but we cannot
determine them explicitly. The bifurcation we are interested in is when u = 0 so we
consider the parameter ranges which admit such a solution. With u = 0 euqations
(10) give, with

AT

ctgvr = -

, % <(vt), <m, (11)

for all finite 4 < 0 where (v7), is a solution. We can see that such a solution (v7),

exists on sketching ctg vr and % as functions of vr.

Ar J—

3
2 L
1t — ctg(v7)
0 At
—1F ;
-2 F
3t

Figure 7. Existence of solution (v7),on the interval (;—r, )

Obviously, there are other solutions (v7),, of this equation in the ranges
[(2m +1) ;—r, (m + 1)71'] for m =1, 2, ... but we need only to consider the smallest
positive solution (v7); since that gives the bifurcation for the smallest critical 7 > 0.
We now have to determine the parameter ranges so that with y = 0 and vt substi-

tuted back into (10) a solution exists. That is, what are the restrictions on 4, B and 7
so that

0=A4+ Bcos(v1),,
(v1); = =B 1sin (vr),

are consistent? These imply

~Br= \/(—A %+ (1), . (12)

If A4, B and 7, which determine (v7);, are such that the last equality cannot hold then
no solution with u = 0 exists.

- 14 -
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Since A and B are negative, the solution is stable in the limiting case 7 = 0 since
then ReA = u = 4+ B < 0. Now consider (10) and increase 7 from 7 = 0 . From the

last equation and (11) a solution with u = 0 cannot exist if

-BT< \/(—A )7+ (v),?
(D) ctg (v = AT, T < (v <7

(13)

and, from continuity arguments from 7 = 0 we must have yu < 0. So the bifurcation
condition which just gives u =0 is (12). Or, put in another way, if (13) holds, the
steady state solution of (4) is linearly, and in fact globally, asymptotically stable. In
terms of the original dimensionless variables the conditions are thus

axy Vo't < \/(a Vo) +(v1),?,
(vr)yctgvr) =—alpt

If we now have 4 and B fixed, a bifurcation value 7. is given by (12).

Actual parameter values for normal humans have been obtained by Mackey and
Glass (1977). The concentration of gas in blood is measured in terms of the partial
pressure it sustains and so it is measured in mmHg (that is, in torr). Dalton’s law
states that the partial pressure exerted by each gas in a mixture equals the total
pressure times the individual composition of the gas in the mixture. Relevant to the
dimensional system (2), they estimated V) = 7 litre / min, the average ventilation per
minutes, which is the product of the tidal volumen (half litre) and the sedent breath-
ing frequency (14/min), co = 40 mmHg, p = 6 mmHg /min,
Vo' = 4 litre /min mmHg, 7 = 0.25 min.

From (5), which defines the dimensionless steady state, we have a V) = xl—o So, with

the stability condition in mind, we have, using the nondimensionalisation,

—At=aVyr= T = Hmeed - 2205 - (0375,

X0 Co 40

The solution of the second of (13) with such a small right-hand side is (v7); ~ 72—r and

so (v1); > a Vy T which means that the inequality for stability from the dimension-

less stability condition is approximately, but quite accurately, V' < 2(;; -. So, if the
0

gradient of the ventilation at the steady state becomes too large the steady state
becomes unstable and limit cycle periodic behaviour ensues. With the estimated
parameter values the critical dimensional ventilation is

7TVO

I SR (WAL : N . .
Vo' = Tart = 21 (dimensionless values) = o = Tpto o (dimension values)
v 7 . .
=V = L = —~ ~ 7.33 litre / min mmHg

0 = 2ptym  2%6x025

The gradient increases with the Hill coefficient m. Other parameters can of course
also initiate periodic behaviour; all we require is that V' <

T s violated. In
2ax0T

-15 -
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dimensional terms we can determine values for m and a in the expression (1) for the
ventilation, which result instability.

As either the steepness of the CO, response or the delay time increases, the steady
states becomes unstable and low amplitude oscillations or high amplitude oscilla-
tions in which there is distinct apnea are observed. Similar breathing patterns are
observed clinically. Cheyne-Stokes respiration is often found in patients who have
increased delay times between oxygenation of the blood in the lungs and stimulation
of chemoreceptors in the brainstem, and also increased sensitivity to CO,. A phe-
nomenon analogous to Cheyne-Stokes respiation in humans has been induced in
dogs by inserting a circulatory delay between the heart and the brain. There are
other pathological conditions in which highly irregular breathing patterns are
observed; for example apneic breathing in premature infants.

(a)

70
%8 15)
;’Zg 0 7N YN VRN
= 5{: \/ \_/ \_/
G 05 1.0 1.5 2.0 2.5 3.0

Time (minutes)

A ATEA
VAWAWAN

0 05 10 15 20 25 30

Time (minutes)

/N
\D)

Volume

(litres/min)
[ )
= ?

Al

Figure 8. Dimensional results of numerical simulations of
(1) = p=b Vi ) i in 1]

Figures 8 (a) and (b) show the dimensional results of numerical simulations of (2)
with Vy'=7.7litre/minmmHg and V' = 10.01 litre/min mmHg. Note that the
period of oscillation in both solutions is about 1 minute, which is 47 where
7 = 0.25 min is the estimate for delay given in human parameters.

These analytical results are similar to results found by numerical integration of more
complex models of the respiratory system. Because of the crudeness of our mathe-
matical model and experimental difficulties encountered in measuring respiratory
control parameters, detailed numerical comparision with experiments are difficult.
However our value for 7 is comparable to that found in Cheyne-Stokes patients. Our
critical value for V| lies above the generally accepted normal range of 2 to 6
liter/min mmHg, and is comparable to sensitivities found in Cheyne-Stokes patients.
The experimentally observed period of Cheyne-Stokes breathing is of the order two
or three times the estimated 7.

-16 -
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c(t) c(t)
6.2 10
6.1 3
6.0 6
5.9 4
5.8 2
t ‘ ‘ ‘ ‘ -t
2 4 6 8 10
7=0.15 7=0.25
(t-1)

Figure 9. Solution of ¢'(t) = p — b Vinax c(?)

am+c"(t-7)

Figure 9 shows the solution with two different 7. On the first one we can see the
oscillation dying out because 7 < 7., the second one shows periodicity with 7 > 7.

4. Computer-aided experiments

The undermentioned figures support the theoretical results. Shifting the solution
curve of linearized equation to the steady state it has similar behaviour than nonlin-
earized one.

Solution curve

tvs. eft) [ e(t) vs. e(t—T) | eft) vs. e(t—7) vs. c(t—27)

— cft) -+ eq — uft)

N @ v W @

Linear equation
A -1.29316

c(f)
1

B —6.06766

Parameters of solution

eq 4.63978 of,

Initial value []e 40
Zoom |} 5
Delay [}
Time 1 8.9

=

Figure 10. ODE case, Iv = 40, Zoom = 5, Delay = 0, Time = 8.9

Considering the equations without delay (7 = 0) both curves quickly, monotonically
decrease to the equlibrium. What would happen if we vary conditions? Nothing.
Changes neither in nonlinear equation parameters nor in the initial value will modify
the curves, only the monotonic behaviour is different compared to the steady state.
In this case we deal with ordinary differential equation (Figure 10).
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Solution curve

tvs. e(t) | eft) vs. e(t—T) | e(t) vs. c(t—7) vs. e(t—27)
Nonlinear equation
. 0 e — c(t) =--eq — u(t)
b {1 3
m ] 5
p {J 6
Vimax {0 7
Linear equation
A-1.29316
B -6.06766
Parameters of solution
eq 4.63978
Initial value D 56 0 ! 2 3 N ? o !
t
Zoom D 13
Delay {1 0.25
Time {1 7.5

Figure 11. Asymptotic stability ¢ vs. ¢(¢), Iv = 5.6, Zoom = 1.3, Delay = 0.25,
Time = 7.5

Solution curve

tvs. e(t) | c(t) vs. c(t—1) | cft) vs. c(t—7) vs. c(t—271)

Nonlinear equation

a 0 8 — (c(t)e(t-1)) = (u(t)u(t-7))
b D 3 / \
m D 5 rdl
p { 6
Vimax (] 7

Linear equation

A—1.29316 (o)
B —-6.06766
Parameters of solution
eq 4.63978
Initial value - [| 56
Zoom 0.45
D 424 L L
Delay {1} 0.25 42 4 46 48 50
Time {1 7.5

Figure 12. Asymptotic stability c(¢) vs. c(t — 1), Iv = 5.6, Zoom = 0.45, Delay = 0.25,
Time = 7.5

Set the delay 7 = 0.25. The oscillation around the steady state will die out, asymp-
totic stability appears. The linearized curve follows the original one with small
perturbation. In function of ¢(¢) vs. c(¢ — 1) also attractive behaviour shows up. Both
tend to the steady state which is a point with same coordinates (does not depend on
delay). The initial value determines the amplitude and the length of oscillation in
time. Lets modify it. An interesting option is 6. The curves move close together
almost write the same lines. Higher or lower settings are similar to the represented
one (Figure 11-12).
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Solution curve

tvs. c(t) | e(t) vs. c(t—7) | c(t) vs. c(t—7) vs. c(t—27)
Nonlinear equation
a {1 8 — c(t) ---eq — u()
b 1 3
m —{] 5
P { 6
Vmax D 7
Linear equation [
A -1.29316
B -6.06766
Parameters of solution
eq 4.63978
Initial value -{} 3.8
- 14
Zoom -} 45
Delay { 0.33
Time [] & 10.

Figure 13. Stability-instability ¢ vs. c(¢), Iv = 3.8, Zoom = 4.5, Delay = 0.33, Time = 10

Solution curve

tvs. c(t) | eft) vs. c(t—-7) | c(t) vs. c(t—7) vs. c(t—27) |

Nonlinear equation

a 1 8 — (©O(t=)) = (u().u(t=))
b 0 3 /
m D 5 }f
P { 5
Vinax {J 7
5
Linear equation =
A -1.29316 g‘
B —6.06766 Ta .
Parameters of solution
ey 463978 2l
Initial value [} 38
Zoom ] 45
Delay {1 0.33 2 4 6 8
Time IR )

Figure 14. Stability-instability c¢(¢) vs. c(t — 1), Iv = 3.8, Zoom = 4.5, Delay = 0.33,
Time = 10

Exceeding the critical delay bounded periodic behaviour shows up in the dimen-

sional solution. The solutions start strictly together then they separate from each

other. The linearized one differs more and more with from the steady state with

growing amplitude (Figure 13-14).

Emerging questions:

— Is there an option of parameters when both solutions are stable with limit cycle
oscillation?

— Is there an option of parameters when both solutions are instable at the same time?

— Which parameter causes the least and the biggest difference in the shape of curves?
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5. Summary

The purpose of this thesis is to do computer-aided investigations of the stability
properties of equilibria of delay differential equations features via a so-called
Cheyne-Stokes respiratory ailment.

Based on work of J. D. Murray in Mathematical Biology p. 21 we defined a model
which describes the biologicalphenomenon and nondimensionalized it for further
studies. The existence of equlibrium are stated also computable knowing the ade-
quate parameters. We sumarized the linearization method of ordinary differential
equations as well delay differential equation. We investigated the solution of lin-
earized equation in the form of e’ even as ordinary case. The characteristic equa-
tion has distinct features as in ordinary case. There are at most countably many
characteristic roots and the set of characteristic roots has no finite accumulation
point. On the general equation u'(f) = A u(f) + Bu(t — 7) we determined the neu-
tral stability curves along which the characteristic equation has purely imaginary
roots. Since here we are concerned with the oscillatory nature of the disease we
were interested in parameter ranges where the steady state is unstable so, we must
determined the bifurcation values of the parameters such that ReA = 0. As a sum-
mary of our theoretical statements the last complex interactive figure lets us experi-
ment with parameter ranges, initial condition and delay time of the problem.

We have shown how simple mathematical model of a physiological control systems
can reproduce qualitative features of normal and pathological functions. We believe
there is a large class of dynamical diseases, one of which have been considered here,
characterised by the operation of a basically normal control system in a region of
physiological parameters that produces pathological behaviour. Our analysis suggest
the following approaches: demonstrate the onset of abnormal dynamics in animal
models by gradual tuning of control parameters; gather sufficiently detailed experi-
mental and clinical data to determine whether sequences of bifurcations similar to
those found here actually occur in physiologycal systems; and attempt to devise
novel therapies for disease by manipulating control parameters back into the normal
range.

Finally, we mention that an important result of our work is the development of tools
in Wolfram Mathematica to study the stability properties and the linearization
method of delay differential equations.
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A. Appendix

O Notations

c(?): concentration of CO; in arteries

x(?): dimensionless concentration

u(?): linearized variable

t: time

7: delay

A: eigenvalues of the characteristic equation
w: real part of A

v: imaginary part of A

DEFINITION 1

A delay differential equation is a differential equation where the time derivatives at
the current time depend on the solution and possibly its derivatives at previous times

xXO=F,x@®),x(t-11), ..., x0E—-7y), .., x't—=07), ..., x'(t—0)),
t=1
x(@®)=¢ (@), t<i

Instead of a simple initial condition, an initial (history) function ¢(¢) needs to be
specified. The quantities 7; =0, i=1, .., nand 0; =0, i =1, ..., m are called the
delays or time lags. The delays may be constants, functions 7(¢) and o (¢) of ¢ (time-
dependent delays), or functions (¢ — x(¢)) and o (¢ — x(¢)) (state-dependent delays).

A time-dependent solution of a DDE is not uniquely determined by its initial state at
a given moment but, instead, the solution profile on an interval with length equal to
the delay (or time lag) 7 has to be given. That is, we need to define an infinite-
dimensional set of initial conditions between ¢ = —7 and ¢ = 0. Thus, DDEs are
infinite-dimensional problems, even if we have only a single linear DDE.

DEFINITION 2

We say that f'is an analytic function on D provided D is an open set and f'is differen-
tiable at each point of D, besides if f'is analytic on all of C then f is said to be an
entire function.
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B. Appendix

Figure 2

cm
Manipulate [Plot [ { —
a" + c
PlotStyle » {{Thick, ColorData["HTML"] ["RoyalBlue"]},
{ColorData["HTML"] ["DimGray"], Dashed}},

Frame -» {True, True, False, False},

, 1}, {c, 0, 5}, PlotRange » {0, 1.1},

Framelabel -» {"time", "concentration"},
FrameStyle » {Italic, Italic}, ImageSize - 140] ,

{{m, 5}, 1, 10, ControlPlacement » Left, ImageSize » Tiny},
{{a, 2}, 0, 10. ControlPlacement » Left, ImageSize » Tiny},

ControlPlacement - Left]

Figure 3

1 x0™
Manipulate[Module [{rhs = ——, lhs = —} ,
a x0 1+ x0™
Plot[{rhs, lhs}, {x0, 0, 3}, PlotRange - {{0, 2}, {0, 2}},
PlotStyle » {{Thick, ColorData["HTML"] ["RoyalBlue"]},
{Thick, ColorData["HTML"] ["DarkGreen"]}},
AxesLabel -» {"x¢"}, AxesStyle » {Italic, Italic},

1
PlotLegends - {" —", "V (Xg) "} , ImageSize - 140] ] ,
a Xo

{{a, 4}, .1, 5}, {{m, 3}, 1, 5}, ControlPlacementeTop]

Figure 4

es = Flatten[

Table[{a, m, FindRoot[ 10 == 1x0“‘0m’ {x0, 0.5}] [[1, 2]]},
ax + X

{a, 1,10, 0.1}, {m, 1, 5, o.1}], 1];

f = Interpolationes];

Plot3D[f[a, m], {a, 1, 10}, {m, 1, 5}, BoxRatios > 1,
ColorFunction -» ColorData["AtlanticColors"],
AxesLabel » {"a", "m"}, ImageSize » 150]
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Figure 5

Manipulate [
DynamicModule[{},

Listplot|{
1 A
Table [Tooltip[— (A T + ProductLog[c, Be™"* 1:] )] ,
T

{c, -n, n}]/. z_?NumericQ - {Re[z], Im[z]}},

AxesLabel » {"Re A", "Im A"}, AspectRatio- 1,
AxesOrigin-» {0, 0}, PlotStyle -
{{ColorData["HTML"] ["DarkGreen"], PointSize[0.02]}},

ImageSize » - 150]
], {{A, -1}, -10, 10, ImageSize - Tiny},
{{B, -1}, -10, 10, ImageSize -» Tiny},
{{t, 1.}, 0.1, 2, ImageSize -» Tiny},
{{n, 8}, 1, 10, 1, ImageSize » Tiny}, ControlPlacement - Left]

Figure 6

Manipulate [Show[{ParametricPlot [{a, -a},
{a, -20, 1}, PlotRange -» {{-20, 20}, {-20, 20}},
PlotStyle -» {Thick, ColorData["HTML"] ["RoyalBlue"]},
PlotLegends » {"a+3=0"},

AxesLabel » {"a", "B"}, ImageSize - 150],
Cos [s] 1 }

, —S
Sin [s] Sin [s]

{s, .1, m- .1}, PlotRange -» {{-20, 20}, {-20, 20}},
PlotStyle » {ColorData["HTML"] ["DarkGreen"], Thick},

ParametricPlot [ {s

PlotLegends -» {"Cyp "}] 0

, —S
Sin [s] Sin [s]

{s, .1, (n+1) w- .1}, Exclusions -» {Sin[s] == 0},
PlotRange -» {{-20, 20}, {-20, 20}},
PlotStyle » ColorData["HTML"] ["DarkGreen"],

Cos [s] 1
ParametricPlot [ {s }

PlotLegends -» {"C,, n=1, ... ,5"}]}] 7

{{n, 5}, 1, 5, 1}, ControlType—)None]
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Figure 7

At
Manipulate[Plot[{Cot[vr] , —}, {vt, 0, 2Pi},
VT

AxesLabel » {"vt"}, PlotRange -» {{0, 3}, {-3, 3}},
PlotStyle » {{Thick, ColorData["HTML"]["RoyalBlue"]},
{Thick, ColorData["HTML"] ["DarkGreen"]}},

At
PlotLegends - {"ctg(Vt) PR —"} , ImageSize -» 150] .
vt

{{At, -1}, -1, -5, ControlPlacement - Left,

ImageSize » Tiny}, ControlPlacement - Left]

Figure 9

Manipulate[Module[{a =8, m =10, p=6, B=3, Vmax=17,
c[t - ]™

a" + c[t - 'C]m’

sol = NDSolve [{c '[t] =p-BVmaxc|[t]

c[t /; t < 0] = 40}, c, {t, -1, 10}]},

Plot[Evaluate[c[t] /. First[sol]], {t, -1, 10},
AxesLabel » {"t", "c(t)"},

PlotStyle » {Thick, ColorData["HTML"] ["RoyalBlue"] }]] 0
{{t, 0.15}, 0.1, 1}, Framelabel -» "t=0.15",

SaveDefinitions - True]
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Figure 10-14

Manipulate [

Block[{ c, u, t},

m

y—m, x] /. {x—>eq}) /. {y->eq};

A= D[p—meaxx
a" + y

B = [D[p—meaxx ﬁ, y] /. {y—>eq}J /. {x->eq};

a" +y
cm

eq=c/. FindRoot[p -bVmaxc ——

a" + c"

=0, {c, 1}] [[111:
sol = First[c /. NDSolve]|
{c'[t] =p-bVmaxc[t] c[t - ]/ (a" + c[t - T]™),
c[t /; £t £0]=1IC}, c, {t, 0, T}1]1:
sollin =First[u /. NDSolve[{u'[t] ==Au[t] +Bu[t- t],
u[t/; t< 0] =IC-eq}, u, {t, 0, T}11-;
imagesize = ImageSize -» {300, 300}; pr = {eq+ 2z, eq- 2};
fr = Frame » {True, True, False, False};
coleq = ColorData["HTML"] ["OrangeRed"] ;
collin = ColorData["HTML"] ["DarkRed"] ;
colsol = ColorData["HTML"] ["RoyalBlue"] ;
TabView [
{Text[Style["t vs. c(t)"]] -~
Show [
Plot[{sol[t], eq}, {t, O, T},
PlotRange - pr,
PlotStyle » {{colsol, Thick}, {coleq, Thick, Dashed}},
PlotLegends -» Placed[{"c(t)", "eq"}, Above]],
If[cb, Plot[eq + sollin[t], {t, O, T}, PlotRange -
{{0, T}, {-10, 10}}, PlotStyle » {collin, Thick},
PlotLegends -» Placed[{"u(t) "}, Above]], Graphics[]],
fr, FrameLabel -> {t, c[t]}, imagesize],
Text[Style["c(t) vs. c(t-T)"]] ~»
Show [
Graphics[{PointSize[0.03], coleq, Point[{eq, eq}]}],
ParametricPlot[{sol[t], sol[t -]},
{t, 1, T}, PlotStyle » {colsol, Thick},
PlotLegends -» Placed[{" (c(t) ,c(t-T)) "}, Above]],
If[cb, ParametricPlot[{eq + sollin[t], eq + sollin[t - t]},
{t, 1, T}, PlotStyle -» {collin, Thick}, PlotLegends -
Placed[{" (u(t) ,u(t-t))"}, Above]], Graphics[]],
PlotRange -> {pr, pr}, fr, FrameLabel ->
{c[t], c[t -]}, imagesize],
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Text[Style["c(t) vs. c(t-t) vs. c(t-2t)"]] ->
Show [
Graphics3D]|
{PointSize[0.03], coleq, Point[{eq, eq, eq}]l}],
ParametricPlot3D[{sol[t], sol[t-t], sol[t-2T1]},
{t, 1, T}, PlotStyle -» {colsol, Thick}, PlotLegends -
Placed[{" (c(t) ,c(t-T) ,c(t-2t)) "}, Above]],
If[cb, ParametricPlot3D[{eq + sollin[t],
eq + sollin[t - t], eq + sollin[t-2T<]},
{t, 1, T}, PlotStyle -» {collin, Thick}
, PlotLegends -» Placed[{" (u(t) ,u(t-t) ,u(t-2t))"},
Above] ], Graphics3D[]],
PlotRange -> {pr, pr, pr}, Axes - True,
AxesLabel -> {c[t], c[t-t], c[t-21T]}, imagesize]

}, Dynamic[pos]]|,

Style["Solution curve", 12, Bold], Delimiter,
Text[Style["Nonlinear equation", Bold, 11]],
{{a, 8, "a"}, 1, 10,

Appearance - "Labeled", ImageSize - Tiny},
{{b, 3, "b"}, 2, 4, Appearance - "Labeled", ImageSize - Tiny},
{{m, 5, "m"}, 4, 8, Appearance -» "Labeled", ImageSize - Tiny},
{{p, 6, "pP"}, 5, 7, Appearance -» "Labeled", ImageSize - Tiny},
{{Vmax, 7, "Vpax"}, 6, 8,

Appearance - "Labeled", ImageSize - Tiny}, Delimiter,
Control[{{cb, True, Text[Style["Linear equation", Bold, 11]]},

{True, False}, ControlType -» Checkbox}],
PaneSelector [ {True -» Row[{Row[{" "
"A", " ", Dynamic[A]}], "\n",
Row[{" ", "B",
" ", Dynamic[B]}]}],
False »Row[{" "}]}, Dynamic[cb]], Delimiter,

Text[Style["Parameters of solution", Bold, 11]],
{eq, Appearance - "Labeled", ImageSize - Tiny},
{{IC, 5, "Initial value"}, 1, 40,

Appearance - "Labeled", ImageSize - Tiny},
{{z, 5, "Zoom"}, 5, 0.1, Appearance -» "Labeled",

ImageSize - Tiny},
{{t, 0.25, "Delay"}, 0, 0.5,

Appearance - "Labeled", ImageSize - Tiny},
{{T, 5, "Time"}, 2, 10, Appearance - "Labeled",

ImageSize - Tiny},

ControlPlacement » Left, SaveDefinitions - True]
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Osszefoglal6:
A Cheyne-Stokes légzés késleltetett
modelljének szamitégépes vizsgalata

Banhegyi Eliza
Bolyai Intézet, Természettudomanyi és Informatikai Kar
Szegedi Tudomanyegyetem

A Cheyne-Stoke 1égzés egy embereket veszélyeztetd 1€gzési betegség, mely az
altalanos 1égzésminta valtozasaval mutathaté ki. Ilyenkor az amplitidd, ami
kozvetleniil 6sszefiigg a 1€gzési térfogattal, a ventilacidval, szabalyosan emelkedik
¢s csokken minden peridodusban, periddusonként atmeneti 1égzés kimaradéssal
megszakitva. Ekkor a 1égzésenkénti térfogat rendkiviil alacsony (1. abra).

ElOszor is sziikségiink van néhany fizioldgiai tényre a modelliinkhéz. Az
artérids szén-dioxid szintet (CO,)- jeldlje c(?)- receptorok ellenérzik melyek
meghatarozzak a légcsere mértékét. Ezek a CO,-érzékeld receptorok az agytorzsben
helyezkednek el, tehat van egy velejard késés - jeldlje 7 -, az egész 1égzésszabalyzé
rendszerben. Tudjuk, hogy a légcsere reakciogdrbéje a CO,-ra szigmoid alaku.
Tegyiik fel, hogy a V" 1égcsere fliggése c-tdl kozelitdleg leirhatd az ugy nevezett Hill-
figgvénnyel, ahol V,,x a maximalis 1égzési kapacitds, a paraméter a ¢és a Hill
egyiitthatd m pozitiv konstansok, melyek kisérletileg meghatarozottak.

Tegyiik fel, hogy a CO; kiiiriilése a vérbdl aranyos a légcsere és a vérbeli CO,
szint szorzataval. Legyen p a CO, alland6 metabolikus termelddése a testben. Ekkor
a CO, szint valtozasa modellezhet6 a

% = P—b Vinax ¢(f)

" (t—-71)
a”+c"(t-7)
egyenlettel, ahol b egy pozitiv paraméter, mely szintén kisérleti adatokbol
meghatarozhatd. A 7 késés a tiidébeli vér oxigénellatasa és az agytorzsi kemorecep-
torok érzékelése kozott eltelt 1do.

Els6 1épéseként atparamétereziink, bevezetjiik a dimenzidtlan mennyiségeket,
hogy egyszertsitsiik a jeloléseket: x' (£) = 1 —a x (¢) V(x(¢t — 7)). Keressiik az egyensu-
lyi helyzetét a fenti egyenletnek. Mivel az i monoton csokken 0-ba, a V(xg)

0

monoton nd 1-be, amint xy — oo, igy egyetlen pozitiv egyenstlyi helyzet van (3.
abra).

Kozonséges differencidlegyenletek esetén: legyen az X' (f) = F(X(¢f)) nem-
linedris differencidlegyenlet rendszert. A megoldds explicit megaddsdhoz sziik-
ségiink van az egyensulyi helyzeten kiviil linearizalds mddszerére. Legyen X (¢) az
egyenlet megoldéasa, ekkor tekintsiink egy kis eltérést az egyensulyi helyzettdl
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X(t) = Xy + U(2), ahol U(¢) kielégiti az U'(¢) = F(Xy" + U(t)) egyenletet. Most az
U(¢) = 0 koriili megolddsokra koncentralunk. F-et az X, egyensulyi helyzet koriili
Taylor soréval kozelitjiik. Igy kapunk egyrészt egy linedris tagot masrészt a tobbi
magasabb foku tagot egyiittesen tekintve egy O(U) nagysagrendi elhanyagolhatd
tényez6t. Ekkor fennall a linearizalas alaptétele ([3] p. 151):

e TETEL

Tekintsiik az X' = F(X) differencialegyenlet rendszert ahol F € C!. Tegyiik fel,

hogy

1. X(t) egy megoldisa az X' = F(X) rendszernek minden t € [a, [] esetén
valamint X(ty) = Xy,

2. U(t) a megoldasa az X(t) szerinti varidcios egyenletnek, melyre U(ty) = Uy,

3. Y(¢) az a megoldasa az X' = F(X) egyenletnek, melyre Y(ty) = Xy + Up.

Ekkor

YO -(XO)+UWD)

im
Uo—0 |Uo

egyenletesen minden t € [a, P] esetén.

Késleltetett differencidlegyenletek esetén hasonldé a folyamat. Legyen
x'(t) = f(x(), x(t—71)) a linearizdlni kivant egyenlet f(xg, xo) =0 egyensulyi
helyzettel. Jelolje u az egyensulyi helyzettdl valo eltérést. Ekkor az f tobbvaltozds
Taylor sorba fejtése az (x0, x0) koril:
fx, y) = f(x0, x0) +J(x0).(u(®), u(t = 7)) + O(u?), ahol J(x0) = (s [, 9y f) (x0, Xo)-

A fenti modszert az atparaméterezett egyenletre alkalmazva kapjuk, hogy
u'(@)=Au@®)+Bu(t—71), ahol 4=-aV(xy), B=-axyV'(xp). A megoldast

At alakban keressiik, ekkor a karakterisztikus egyenlet a kovetkezd:

u(t) oce
A=A+Be7. A kdzonséges esettel ellentétben megszamlalhatéoan végtelen sok

karakterisztikus gyokot kapunk, melyeknek nincs véges torlédasi pontja (5. abra).

Vizsgaljuk meg kozelebbrdl az altalanos u' (f) = A u(t) + Bu(t — 1) egyenletet.
A karakterisztikus gyokoket A = p+iv, alakba irva az Euler formula segitségével
kapjuk: u=A+Be * cosvr, v=—-Be #Tsinvr. u=0-t rogzitve vizsgaljuk a
stabilitdsi gorbéket A ¢és B filiggvényében. Ezek mentén tiszta képzetest
karakterisztikus gyokoket kapunk. Az wu =0 egyenstulyi helyzet stabilitasara
vonatkozo6 tétel a kovetkezd ([2] p. 53):

-30 -



E. Badnhegyi On a delay model of Cheyne-Stokes respiration: Computer-aided study

o TETEL

(a) Ha A +B >0, akkor u = 0 instabil.
(b) Ha A+B < 0és B = A, akkor u =0 aszimptotikusan stabil.
(c) Ha A+B <0 és B < A, akkor létezik 7. > 0 ugy, hogy u = 0 aszimptotikusan

stabil, ha 0 < 7 < 7, és instabil, ha T > ..
i

I
J B 42 cos(—%)

Mivel egy oszcillalo természeti betegséggel foglalkozunk, minket azon

A (c) fennallasakor létezik egy tisztan képzetes gyokpar 7. = esetben.

paramétertartomanyok érdekelnek, ahol az egyensulyi helyzet instabil, kiillonoskép-
pen azok, ahol a novekvd oszcillacid elérelathatdlag korlatos ciklikus viselkedéstl.
Meg kell hataroznunk a paraméterek bifurkacios értékét, ahol Re A = 0. Emiatt a

karakterisztikus egyenlet megoldasa rogzitett u =0 mellett ctgvr = AV—TT, ahol

g < (v1); <m.

Ezt visszahelyettesitve az Euler formuldval kapott egyenletekbe a bifurkéacios
feltétel —B7=+/((—47)?+(v7),?). Ha ez az egyenléség nem all fenn, azaz

—Bt<+/((-47)*+(v1),%) , akkor az egyensulyi helyzet lokalisan és globdlisan is
aszimptotikusan stabil. A kisérleti eredmények paramétereit figyelembe véve a
kritikus késés 7 = 0.25 perc. Ezen analitikus eredmények hasonloak a 1égzdszervi
megbetegedések komplexebb modelljeihez. A megfigyelt Cheyne-Stokes 1égzés
periddusa 2-3-szorosa a becsiilt késésnek.

A 10-14 Osszetett interaktiv abra lehetdséget ad az olvasonak tovabbi megti-
gyelésekre kiilonboz6é paraméterek, kezdeti érték, késés €s id6 fliggvényében. 7 =0
késéssel mind az eredeti, mind a linearizalt egyenlet monoton tart az egyensulyi-
heyzetbe. A kezdeti feltétel hatdrozza meg a monoton ndvekvést illetve cslikkenést,
ekkor kozonséges differencidlegyenlettel van dolgunk. A késést novelve az egyensu-
lyi helyzet koriili oszcillalas utan aszimptotikus stabilitds figyelheté meg. A kezdeti
érték ekkor az oszcillacio amplitidojat és hosszat hatdrozza meg. A kritikus késést
tallépve korlatos periodikus viselkedés kovetkezik az eredeti egyenletnél. Egyiitt
indulnak a gdérbék, majd idében egyre jobban eltdvolodnak egymastol, a linearizalt
egyenlet megoldasa instabil.
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