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CHAPTER 1

Functions

1. Classical function spaces

1.1. Space of differentiable functions. Denote by Ω ⊂ Rn an
open set, its closure Ω and boundary ∂Ω.

Ck(Ω) is the set of all function u : Ω → R (or C, but all functions in
conservation laws are real-valued) with continuous derivatives of order
k, 0 ≤ k ≤ ∞.

Ck(Ω) is the set of all functions u ∈ Ck(Ω) such that there exist a
function φ ∈ Ck(Ω′), u ≡ φ on Ω ⊂ Ω′, where Ω′ is an open set.

Ck
b (Ω) consists of functions from Ck(Ω)bounded together with all

their derivatives.
It holds:

Ck(Rn)|Ω ⊂ Ck(Ω) ⊂ Ck(Ω).

If Ω is bounded, then Ck(Ω) ⊂ Ck
b (Ω).

Denote by suppu, u : Ω → R, the complement of the largest open
set Ω′ such that u|Ω′ = 0. The set suppu is called support of the function
u. Since Ω ⊂ Rn,

suppu = {x ∈ Ω : u(x) 6= 0}.
Notation A ⊂⊂ B means that there exists a compact K such that
A ⊂ K ⊂ B.

Ck
0 (Ω) = {u ∈ Ck(Ω) : suppu ⊂⊂ Ω}.

Elements of C∞
0 (Ω) are called test functions.

1.2. Lp-Spaces. A set A ⊂ Ω ⊂ Rn is of Lebesgue measure zero,
L(A) = 0, if for each ε > 0 there exists a numerable union

⋃

i∈N Ci of
parallelepipeds Ci ⊂ Rn such that

mes

∞
⋃

i=1

Ci < ε

(the measure of parallelopiped is the product of its edges lenghts).

In the set of all Lebesgue measurable functions u : Ω → R (all ele-
mentary functions and their compositions are Lebesgue measurable, for
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example) we define the equivalence relation “equal almost everywhere
in Ω”, f ∼ g, if

L({x : f(x) 6= g(x)}) = 0.

Let 1 ≤ p < ∞. From now on Ω will be an open connected set.
“Measurable” stands for Lebesgue measurable.

Lp(Ω) = {f/ ∼: Ω → R : f is measurable ,

∫

Ω

|f(x)|pdx <∞}.

It is Banach space with the norm

‖f‖Lp(Ω) =
(

∫

Ω

|f(x)|pdx
)1/p

.

L2(Ω) is Hilbert space, with the product (f |g) defined by

(f |g) =
∫

Ω

f(x)g(x)dx,

where g(x) stands for complex conjugate of g(x). If we are in the space
of real-valued functions (which will usually be the case) then

(f |g) =
∫

Ω

f(x)g(x)dx.

For p = ∞ we have a different definition:

L∞(Ω) ={f/ ∼: Ω → R : f is measurable and there exists

real M such that |f(x)| ≤M, for every x ∈ Ω}.(1)

L∞(Ω) is also Banach space with the norm

‖f‖L∞ = infM, where the constant M is from (1).

The most important spaces are L2-spaces and L1
loc-spaces which are

defined by

Lp
loc(Ω) ={f/ ∼: Ω → R : f is measurable and for every K ⊂⊂ Ω

∫

K

|f(x)|pdx ≤ ∞}.

Functions from L1
loc are called locally integrable ones.

Hölder inequality

(2)

∫

Ω

|u(x)v(x)|dx ≤ ‖u‖Lp‖v‖Lq , u ∈ Lp(Ω), v ∈ Lq(Ω),
1

p
+
1

q
= 1.

will often be used. The special case p = q = 2 is called Schwartz
inequality.

Corollaries of Hölder inequality:
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1.

mes(Ω)−1/p‖u‖Lp ≤ mes(Ω)−1/q‖u‖Lq , u ∈ Lq(Ω), p ≤ q.

2.

‖u‖Lq ≤ ‖u‖λLp‖u‖λLr , u ∈ Lr(Ω), p ≤ q ≤ r,
1

q
=
λ

p
+

1− λ

r
.

3.
∫

Ω

u1...umdx ≤ ‖u‖Lp1 ...‖u‖Lpm ,

ui ∈ Lpi(Ω), i = 1, ..., m,
1

p1
+ ... +

1

pm
= 1.

2. Weak derivative and weak solution

2.1. Weak derivative. Denote by |α| = α1 + ...+ αn multiindex
α = (α1, ..., αn) ∈ N

n
0 and

∂αf(x) =
∂|α|

∂α1x1...∂αnxn
.

(If αi = 0 for some i, there is no derivative with respect to the variable
xi.)

Definition 1. A function f ∈ L1
loc(Ω) has α-th weak derivative,

|α| ≤ m, denoted again by ∂αf , if there exist a function g ∈ L1
loc(Ω)

such that
∫

Ω

f(x)∂αφ(x)dx = (−1)|α|
∫

Ω

g(x)φ(x)dx,

for every φ ∈ C∞
0 (Ω). The function g will be called α-th weak derivative

for f .

The following theorem is very useable and illustrative.

Theorem 1. If there exists a weak derivative for a locally integrable
function u, then u is almost everywhere differentiable and the weak
derivative equals to a strong at the points where it exists.

2.2. Weak solution of partial differential equations. Notion
of a weak solution is not defined in a unique manner. It should be
defined to fit a physical problem as much as it can.

First, we shall give the definition for first order systems. Later on,
the definition will be easily adopted to an equation of higher order.



4 1. FUNCTIONS

Definition 2. A system of first order partial differential equation
is in divergence form if it can be written as

(3) ∂ta0(t, x, u) + ∂x1
a1(t, x, u) + ...+ ∂xn

an(t, x, u) = b(t, x, u),

where u = u(t, x1, ..., xn) is a vector valued function. Suppose that u
satisfies initial condition u(x, 0) = u0(x). It is said that

u ∈
(

L1
loc([0, T )× Ω)

)n

is weak solution to system (3) with the above given initial data if
∫ t

0

∫

Ω

∂tφ(t, x)a0(t, x, u) + ∂x1
φ(t, x)a1(t, x, u) + ...

+ ∂xn
φ(t, x)an(t, x, u)dxdt +

∫

Ω

u0(x)dx

=

∫ t

0

∫

Ω

b(t, x, u)φ(t, x)dxdt,

(4)

for every φ ∈ C∞
0 ((−∞,∞)× Ω).

As one can see, vector valued function u is not necessary differen-
tiable and the name “weak solution” comes from that fact.

Also, it is easy to check, using integration by parts, that every
C1-solution of (3) also satisfies (4), i.e. it is weak solution, too.

For practical reasons we shall use the following simpler (and weaker)
condition instead of (4):

∫ t

0

∫

Ω

∂tφ(t, x)a0(t, x, u)∂x1
φ(t, x)a1(t, x, u) + ...

+ ∂xn
φ(t, x)an(t, x, u)dxdt

=

∫ t

0

∫

Ω

b(t, x, u)φ(t, x)dxdt

lim
t→0

u(t, x) = u0 almost everywhere in Ω,

(5)

for every φ ∈ C∞
0 ((0,∞)×Ω). Note that now φ is defined on a smaller

domain, i.e. equals zero on the x-axe (t = 0).

Remark 1. If a system is not given in the divergence form, then
a definition of a weak solution is much more difficult to give and more
specific. That was out of scope here.

Systems where t is distinguished variable are called evolution sys-
tems (or systems “written in evolution form”).
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3. Distribution spaces

In this section we shall present a simplified version of distribution
theory. We shall use convergence in vector spaces and not topology.

Mapping from a vector space over some field into that field (usually
R or C) is called functional.

Let us introduce a convergence in the set C∞
0 (Ω).

Definition 3. A sequence {φj} ⊂ C∞
0 (Ω) converge to zero as j →

∞ if

• There exists a compact K ⊂⊂ Ω such that suppφj ⊂ K, for
every j ∈ N.

• For each α ∈ Nn
0 , ‖∂αφ‖L∞(Ω) → 0, as j → ∞.

This convergence is denoted by
D→.

The set C∞
0 (Ω) with the convergence defined in this way will be

denoted by D(Ω). Elements of this space will be called test functions.

Definition 4. Linear continuous functional S with the domain
D(Ω) is called distribution. Its acting on the test function φ is denoted
by 〈S, φ〉.

Continuity is understood in the means of convergence: S is contin-
uous if for each sequence of test functions {φj}j converging to zero as
j → ∞ it holds 〈S, φj〉 → 0, as j → ∞.

Vector space of distributions is denoted by D′(Ω).

Now, we shall give some important examples of distributions. The
first one shows how locally integrable function can be treated as dis-
tributions and the second one is an example of distribution which can
not be treated as a usual function.

Example 1. Let f ∈ L1
loc(Ω) and φ be a test function. Then

mapping from D into R defined by

Sf : 〈Sf , φ〉 =
∫

Ω

f(x)φ(x)dx

define a distribution: Functional Sf is obviously linear and

|〈Sf , φ〉| ≤ ‖φ‖L∞(Ω)

∫

suppφ

|f(x)|dx.

That means that if a sequence {φj} converges to zero in D, then
〈Sf , φj〉 → 0 as j → ∞, i.e. Sf is a distribution.
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Example 2. Let a ∈ Ω. Relation

〈δa, φ〉 = φ(a)

defines Dirac delta distribution at the point a. If a = 0, then we write
just δ instead δ0.

4. Properties and operations with distributions

(1) For a sequence of distributions {Sj} ⊂ D′(Ω) is said to con-
verge to zero if

〈Sj, φ〉 → 0, as j → ∞,

for every φ ∈ D(Ω). Convergence in the distribution space

is denoted by
D′

→. (In distribution theory this convergence
is called “weak”). Convergence to zero is enough since the
distribution space is a vector one: Sj → T , T ∈ D′(Ω) if and
only if

〈Sj − T, φ〉 → 0, as j → ∞,

for every test function φ.
(2) S ∈ D′(Ω) is zero on ω ⊂ Ω if

〈S, φ〉 = 0,

for every test function φ with a support in ω.

Definition 5. Support of a distribution S ∈ D′(Ω), suppS, is a
complement of the maximum open set where S = 0 (i.e. set of point in
Ω which do not have a neighborhoods ω where S = 0).

Definition 6. E ′(Ω) is the space of distributions with compact sup-
port.

Example 3. suppδ = {0}, because for each x ∈ Ω, x 6= 0, there
exists its neighborhoods ω not containing zero and there exist a test
function φ with a support in ω. That means

〈δ, φ〉 = φ(0) = 0.

Definition 7. Distributional derivative S of order α ∈ Nn
0 is de-

fined by

〈∂αS, φ〉 := (−1)|α|〈S, ∂αφ〉, for every φ ∈ D(Ω).

Since ∂αφ is also in D(Ω), one can see that the definition makes
sense, i.e. each distribution has a derivative of every order. That fact
is the main reason why distributions are so important.
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Lemma 1. Differentiation is a continuous operation in the distri-
bution space.

Example 4. We can easily calculate each derivative of the delta
distribution,

〈∂αδ, φ〉 = (−1)|α|〈δ, ∂αφ〉 = (−1)|α|∂αφ(0).

One can easily verify the following. If g ∈ L1
loc(Ω) is α-th weak

derivative of f ∈ L1
loc(Ω), then Sg = ∂αSf , where Sf (or Sg) is the

distributional image of f (or g).

Example 5. Define Heaviside function

H(x) =

{

0, x < 0

1, x > 0.

Since H is locally integrable function we can identify it with a dis-
tribution defined on R. We will show that its derivative is the delta
distribution. Let φ be an arbitrary test function on R. Then

〈H ′, φ〉 = −〈H, φ′〉 = −
∫ ∞

0

φ′(x)dx = φ(0) = 〈δ, φ〉.

If W k(Ω) stands for the space of locally integrable functions on Ω
having all derivatives of order less or equal to k, then

Ck(Ω) ⊂W k(Ω) ⊂ D′(Ω).

(Here, function is identified with its image in the space of distributions.)
If f ∈ C∞(Ω), then we can define its product with a distribution S,

T = Sf , in the following way

〈T, φ〉 := 〈S, fφ〉, φ ∈ D(Ω).

But, there is no general definition of the product if f is not smooth.
This is the main disadvantage of distributions.

At the end of the paper, we shall give a possibility to overcome that
fact by introducing Colombeau-type generalized function spaces.

5. Sobolev spaces

5.1. Definitions. Let m ∈ N0, p ≥ 1 and Ω be an open subset
of R

n. Denote by W k(Ω) the vector space of all locally integrable
functions on Ω which has all weak derivatives of order less or equal
to k. We are in position to define its subspaces which will have the
advantage to be normed (space W k(Ω) is only locally convex, with
topology defined by a sequence of seminorms).
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Definition 8. Sobolev space Hm,p(Ω) is the set of functions u ∈
Wm(Ω), such that

∂αu ∈ Lp(Ω),

for every α ∈ Nn
0 , |α| ≤ m.

Norma is given by

‖u‖Hm,p(Ω) = ‖u‖m,p,Ω :=
(

∫

Ω

∑

|α|≤m

|∂αu(x)|pdx
)1/p

.

An equivalent norm to the above one is given by

‖u‖′Hm,p(Ω) =
∑

|α|≤m

‖∂αu‖Lp(Ω).

In the sequel we shall not distinguish them by notation, i.e. each of
these two norms will be denoted by ‖u‖Hm,p(Ω).

If p = 2, then we shall omit that number in the superscript.

Theorem 2. For each m ∈ N0, H
m(Ω) is Hilbert space with the

product

(6) (u|v) =
∫

Ω

u(x)v(x)dx +
m
∑

i=1

∫

Ω

∇mu(x)∇mv(x)dx.

If p ≥ 1, then Hm,p(Ω) is only Banach space.

Denote by 〈ξ〉 =
√

1 + ξ2. Then, the usual norm of u in Hm(Rn)
is equivalent with the following one

‖u‖′′Hm := sup
ξ∈Rn

m
∑

j=0

‖〈ξ〉û‖L2(Ω).

We are in position to define Hs(Rn), s ∈ R now: u ∈ Hs(Rn) if and
only if ‖u‖′′Hm < 0.

The following spaces are important for defining value of an element
in Sobolev space on the boundary in a simple way.

Definition 9. Hm,p
0 (Ω) is the closure of C∞

0 (Ω) in a norm Hm,p(Ω).
v ∈ Hm,p

0 (Ω) means that there exists a sequence {φj} ⊂ C∞
0 (Ω) such

that

vj
Hm,p

→ v, j → ∞.

For u ∈ Hm,p(Ω), boundary condition u|∂Ω = 0 in a weak sense
means that u ∈ Hm,p

0 (Ω). If v ∈ Hm,p(Ω), then u = v on ∂Ω if and
only if u− v ∈ Hm,p

0 (Ω).
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5.2. Imbedding theorems. We shall give only few of the large
number of these important theorems.

Definition 10. Banach space B1 is continuously imbedded in a
Banach space B2, B1 → B2, if there exists bounded linear injection
from B1 into B2.

Theorem 3. For an open set Ω ⊂ Rn it holds

Hm,p(Ω) → Lq(Ω), mp > n, p ≤ q ≤ ∞
Hm,p(Ω) → Lq(Ω), mp = n, p ≤ q <∞
Hm,p(Ω) → C0

b (Ω), mp > n

Theorem 4. Let Ω be bounded and posses conus property: For each
x ∈ Ω there exists a conus of the height h with the edge at x completely
lying in Ω. Then

Hm,p(Ω) → Lq(Ω), p ≤ q ≤ np/(n−mp)

Hm+j,1(Ω) → Cj
b (Ω), mp > n

x

ω

Figure 1. A set with a conus property





CHAPTER 2

Physical examples

1. Introduction

There is no precise definition of wave, but one can describe it as
a signal traveling from one place to another one with clearly visible
speed.

The signal can be any disturbance, like some kind of maxima or
change of some quantity.

We shall define two kinds of waves.

Definition 11. (i) Hyperbolic waves. They are solution to
hyperbolic equations.

(ii) Dispersive waves. They are solutions to some equation(s) of
the form

(7) ϕ = aψ(kx− ωt),

where its frequency ω is some real function of wave number k, and ω(k)
is defined via a system of partial or ordinary differential or integral
equations.

Phase velocity is
ω(k)

k
. The wave is dispersive if ω′(k) is not a

constant, i.e. ω′′(k) 6= 0.
Group velocity, defined by

c(k) =
dω

dk
,

is especially important for observation of wave propagation.

There exist partial differential equations belonging to both of the
groups. One of these is Klein-Gordon equation

uxx − ux + u = 0

. It is hyperbolic equation with solutions of form (7), with ω2 = k2+1.
But that group is relatively small.

11
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2. Kinetic waves

In a lot of physical problems a disturbance in a material, or in a
state of a medium can arise. So we shall describe the basic building
blocks, density ρ(x, t), flux q(x, t) and the flow velocity:

v(x, t) =
q(x, t)

ρ(x, t)
=

flux

density
.

as well as relations between them.
Homogeneous relation between ρ and q is the simplest one: q =

Q(ρ). Denote c(ρ) = Q′(ρ). The above equation now reads

(8) ρt + qx = 0

ı.e.

(9) ρt + c(ρ)ρx = 0

if ρ and q are regular enough.
First, let us note that the characteristics for (9) are given by the

following ordinary differential equations

γ :
dx

dt
= c(ρ).

Since we are dealing with a conservation law (right-hand side of (8)
equals zero), the curves given by γ are straight lines, i.e. speed of a
wave, c(ρ), is constant.

3. Traffic flow

Obviously, the flow velocity

v(ρ) =
q(ρ)

ρ

is obviously decreasing function with respect to ρ which take values
from a maximum one, at ρ = 0, to zero, as ρ→ ρy. Here ρy is maximal
car density at a road (cars touches one another). The flux q is therefore
a convex function (see Fig. 1) and has a maximal value qm for some
density ρm, while q(0) = q(ρy) = 0.

After observations made in Lincoln tunnel, New York, experimental
data for one right of way are: ρy ≈ 225verichles

mile
, ρm ≈ 80verichles

hour
. (The

maximum flow for the above data could be obtained for car speeds
qm ≈ 20milja

sat
).

A rough model for more than one right of way can be obtained by
multiplying the above values with their multiplicity.
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Figure 1. Flux function for traffic flow model

Suppose that q depends only on ρ, q := Q(ρ). Speed of waves is
given by

c(ρ) = Q′(ρ) = v(ρ) + ρv′(ρ).

Since v′(ρ) < 0, it is less than flow velocity. It means that drivers can
see a disturbance ahead.

In this particular case, speed of waves c is speed of cars, and a flow
velocity is an average velocity of motion of a road relative to all of cars.
Let us note that c > 0 for ρ < ρm (cars are moving faster than average
if density is small) and c < 0 for ρ > ρm (opposite case: high density
of the cars has lower speed than average).

Greenberg’s model for the above tunnel are calculated in the fol-
lowing way: Q(ρ) = aρ log

ρj
ρ
, a = 17.2m

h
, ρj = 228 v

m
. ρm = 83 v

m
,

ρm = 1430 v
h
. Logarithmic function definitely does not approximate

states in a neighborhoods of the point ρ = 0 in a good way, but this is
practically not interesting case, anyway.

A solution to the above problem is just illustrated in the Fig. 2.

4. Sedimentation in a river, chemical reactions

This model describes exchange processes between river-bed and
fluid in the river, i.e. sedimentation transport, more precisely.



14 2. PHYSICAL EXAMPLES

Figure 2. Density of cars

Denote
ρ1 . . . . . . . . density of a fluid
ρ0 . . . . . . . . density of a solid material.

Then, the density is given by

ρ = ρ0 + ρ1

and flux by q = uρ1, where u is a fluid speed. Conservation of mass
law is given by

(ρ1 + ρ0)t + uρ1x = 0,

with the supposition that fluid speed is a constant.
Reaction between these two materials are given by

∂ρ0
∂t

= k1(A1 − ρ0)ρ1 − k2ρ0(A2 − ρ1),

where k1 and k2 are coefficients depending on a reaction speed, and
A1, A2 are constants depending on material specifications (both solid
and fluid ones).

Let us take a special case, so called quasi-equilibrium, when changes
of solid material density due chemical reactions are neglected, i.e.

∂ρ0
∂t

= 0.

We shall also suppose that space-time position is negligible, i.e.

ρ0 = r(ρ1).
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Then we have the following system

ρ1t(1 + r′(ρ1)) + uρ1x = 0

i.e.

ρ1t +
u

1 + r′(ρ1)
ρ1x = 0.

In some models, one can take

r(ρ1) =
k1A1ρ1

k2B + (k1 − k2)ρ1
.

Equation which describes waves in this case follows from law of mass
conservation. In general, flux is given by q = ρu, where u 6= const, so
we need one more equation (for speed u).

5. Shallow water equations

Let us fix some notation:
ρ . . . . . . . height of water level – its depth (≈ density)
u . . . . . . . speed of water flow

Figure 3. Shallow water

This model is used for description of river flow when depth is not so
big (in the later case one can safely take that the depth equals infinity).
It can be also used for flood, sea near beach, channel flow, avalanche,...

Basic assumption in this model is that a fluid is incompressible
and homogenous (forming of “waves”, moving of a water visible on its
surface, is possible). Bottom of a river is not necessary flat, but for a
flat one equations are homogenous – flux is independent of space-time
coordinates. That eases finding global solutions to a system.
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Mass conservation law gives

(10) ρt + (ρu)x = 0.

In order to solve the above equation we shall introduce new partial
differential equation involving the speed u and Newton’s second law:

(mu)· = f (“force = impuls change per time”).

Take a space interval [x1, x2] during a time interval [t1, t2]. Then
∫ x2

x1

ρ(x, t2)u(x, t2)dx−
∫ x2

x1

ρ(x, t1)u(x, t1)dx

=

∫ t2

t1

(

ρ(x1, t)u
2(x1, t)− ρ(x2, t)u

2(x2, t)
)

dt

+

∫ t2

t1

(

p(x1, t)− p(x2, t)
)

dt

“impuls change per time = kinetic energy + force due to preassure”

Contraction of a time-space interval: t1, t2 −→ t and x1, x2 −→ x for
some pint (x, t), gives the following PDE

(11) (ρu)t + (ρu2)x + px = 0.

The pressure in the above equation is the hydraulic pressure. One
gets (we shall assume that density of water equals 1)

Figure 4. Hydraulic pressure

π(y) = g(ρ− y) . . . . . . . . hydraulic preassure,
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where g is the universal gravitational constant (see Fig. 4), and

p =

∫ ρ

0

π(y)dy =

∫ ρ

0

g(ρ− y)dy = g
ρ2

2
.

Substituting this relation into (10) and (11) gives

ρt + (ρu)x = 0

(ρu)t +
(

ρu2 + g
ρ2

2

)

x
= 0.

(12)

Let us differentiate the second equation in the above system assum-
ing enough regularity of solutions:

ρtu+ ρut + 2ρuux + ρxu
2 + gρρx = 0.

Then substitute ρt from the first equation in the modified second
equation. After that procedure we get

ut + uux + gρρx = 0,

and finally the system becomes

ρt + (ρu)x = 0

ut +
(u2

2
+ gρ

)

x
= 0.

(13)

If solutions are not necessarily differentiable, one substitute ω = ρu
(ω is a flux) into system (12) so we get a different one

ρt + ωx = 0

ωt +
(ω2

ρ
+ g

ρ2

2

)

x
= 0.

(14)

In subsequent sections one will see that systems (13) and (14) are
not equivalent in practice (concerning weak solutions) due to the use
of differentiation.

6. Gas dynamics (viscous)

We shall use the following notation:
ρ . . . . . . . . gas density
u . . . . . . . . gas velocity (gas molecule speed)
σ . . . . . . . . pressure (force/area)

As before, we have the following system of conservation laws

ρt + (ρu)x = 0

(ρu)t + (ρu2)x − σx = 0.
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The following relation holds in general:

σ = −p + νux,

where p is a pressure of a gas without moving, and ν is a viscosity
(≪ 1) (see Fig. 5).

Figure 5. Pressure in share gas

Thus,

ρt + (ρu)x = 0

(ρu)t + (ρu2)x + px = νuxx

holds for viscous fluids. For gases it holds ν → 0, so one can often take
ν ≡ 0.

6.1. Thermodynamically effects with gases. We shall con-
tinue to use notation from the previous section. Let p = p(ρ, S), where
new independent variable S stands for entropy.

In order to close the system we need an extra equation. For adia-
batic case one can take

St + uSx = 0,

for example.
For an isotropic, ideal gas, one takes

S ≡ const, ν ≡ 0.
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Now, the viscous case is modeled by

ρt + (ρu)x = 0

(ρu)t + (ρu2)x + (p(ρ))x = 0

p(ρ) = κργ , 1 < γ < 3, γ = 1 + 2/n,

where κ stands for universal gas constant, and n is a number of atoms
in gas molecule.

Let us note that for constant density, ρ = ρ0 ∈ R, there is no
changes in pressure and speed of the gas – no gas movements.

In more than one space dimensions we have well known Navier-
Stokes equation

ρt + div(ρ~u) = 0

(ρu)t + ~u · grad(ρ~u) + (ρ~u) · div~u+ gradp = 0

(or = ν△~u for viscous fluids).

7. Hyperbolic conservation law

Let u ∈ C1(R× [0,∞)) be a solution to the following partial differ-
ential equation

ut + (f(u))x = 0

u(x, 0) = u0(x).
(15)

Take ϕ ∈ C1
0(R × [0,∞)), i.e. smooth function such that its support

intersected by R× [0,∞) is compact.
Then

0 =

∫ ∞

0

∫ ∞

−∞
(ut(x, t) + (f(u))xϕ(x, t)dtdx

=−
∫ ∞

0

∫ ∞

−∞
f(u)ϕxdtdx +

∫ ∞

−∞
u(x, t)ϕ(x, t)dx

∣

∣

∣

t=∞

t=0

−
∫ ∞

0

∫ ∞

−∞
uϕtdxdt

=−
∫ ∞

0

∫ ∞

−∞
(uϕt + f(u)ϕx)dxdt−

∫ ∞

−∞
u0(x)ϕ(x, 0)dx.

The above calculation inspired the following definition of weak so-
lution for (15).

Definition 12. u ∈ L∞(R× (0,∞)) (u is bounded function up to
a set of Lebesgue measure zero) is called weak solution of (15) if

∫ ∞

0

∫ ∞

−∞
(uϕt + f(u)ϕx)dxdt +

∫ ∞

−∞
u0(x)ϕ(x, 0)dx = 0,
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for every ϕ ∈ C1
0(R× [0,∞))

Figure 6. Supports of test functions in halfplane

Remark 2. (1) All classical solutions are also weak.
(2) If u is a weak solution, then u is also a distributive solution.
(3) If u ∈ C1(R× [0,∞)) is a weak solution, then it is a classical,

too.

If we do not say differently, “solution” will mean weak solution from
now on.

In a few steps we shall find necessary conditions for existence of
piecewise differentiable weak solution to some conservation law.

Theorem 5. Necessary and sufficient condition that

u(x, t) =

{

ul(x, t), x < γ(t), t ≥ 0

ud(x, t), x > γ(t), t ≥ 0,

where ul and ud are C1 solutions on their domains, be a weak solution
to (15) is

(16) γ̇ =
f(ud)− f(ul)

ud − ul
=:

[f(u)]γ
[u]γ

.
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Proof. The proof will be given in few steps.
1. Let

u(x, t) =

{

ul(x, t), x < γ(t), t ≥ 0

ud(x, t), x > γ(t), t ≥ 0,

where ul and ud are defined above, be a weak solution to (15). Then
∫ ∞

0

∫ ∞

−∞
(uϕt + f(u)ϕx)dxdt +

∫ ∞

−∞
u(x, 0)ϕ(x, 0)dx = 0,

for every ϕ ∈ (R× [0,∞)).
Also (ul)t + f(ul)x = 0 for x < γ(t) and t > 0 as well as (ud)t +

f(ud)x = 0 for x > γ(t) and t > 0.
That is consequence of the fact that

0 =

∫ ∫

ulϕt + f(ul)ϕxdxdt

=−
∫ ∫

(ul)tϕ+ (f(ul))xϕdxdt,

for every ϕ, suppϕ ⊂ {(x, t) : x < γ(t), t > 0} and C1-function ul.
And since ϕ is arbitrary, we have

(ul)t + (f(ul))x = 0.

The same arguments hold for ud, too.

2.

∫ ∞

0

∫ ∞

−∞
(uϕt + f(u)ϕx)dxdt +

∫ ∞

−∞
u0(x)ϕ(x, 0)dx

=

∫ ∞

0

∫ γ(t)

−∞
(ulϕt + f(ul)ϕx)dxdt +

∫ ∞

0

∫ ∞

γ(t)

(udϕt + f(ud)ϕx)dxdt

+

∫ ∞

−∞
u0(x)ϕ(x, 0)dx.

3. Let us calculate the first integral from above. It holds

d

dt

∫ γ(t)

−∞
ulϕdx

=γ̇(t)ul(γ(t), t)ϕ(γ(t), t) +

∫ γ(t)

−∞
((ul)tϕ+ ulϕt)dx.
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That implies
∫ ∞

0

∫ γ(t)

−∞
ulϕtdxdt = −

∫ ∞

0

∫ γ(t)

−∞
(ul)tϕdxdt

−
∫ ∞

0

γ̇(t)ul(γ(t), t)ϕ(γ(t), t)dt +

∫ ∞

0

d

dt

∫ γ(t)

−∞
ulϕdxdt.

On the other hand,
∫ ∞

0

∫ γ(t)

−∞
f(ul)ϕxdxdt = −

∫ ∞

0

∫ γ(t)

−∞
f(ul)xϕdxdt

+

∫ ∞

0

f(ul(γ(t), t))ϕ(γ(t), t))dt

Adding these terms and using the fact that ul is a solution of PDE
on the left-hand side of the curve (γ(t), t), one gets the following

∫ ∞

0

(f(ul)− γ̇ul)ϕdt +

∫ ∞

0

d

dt

∫ γ(t)

−∞
ulϕdxdt

as a value of that integral.

4. Analogously, concerning the right-hand side, one can see that the
second integral equals

−
∫ ∞

0

(f(ud)− γ̇ud)ϕdt +

∫ ∞

0

d

dt

∫ ∞

γ(t)

udϕdxdt.

5. After adding all the above integrals one gets

0 =

∫ ∞

0

(f(ul)− f(ud)− (ul − ud)γ̇)ϕdt

+

∫ ∞

0

d

dt

∫ ∞

−∞
uϕdxdt +

∫ ∞

−∞
u0(x)ϕ(x, 0)dx,

and
∫ ∞

−∞
u(x, t)ϕ(x, t)dx

∣

∣

∣

t=∞

t=0
= −

∫ ∞

−∞
u0(x)ϕ(x, 0)dx.

That is true if

γ̇ =
f(ud)− f(ul)

ud − ul
=:

[f(u)]γ
[u]γ

.

Obviously the above condition is sufficient. The proof is complete.
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Condition (16) is called Rankine-Hugoniot (RH) condition.

Example 6. Consider the following Riemann problem

ut +
(u2

2

)

x
= 0

u0 =

{

ul ∈ R, x < 0

ud ∈ R, x > 0.

(17)

Since ul and ud are constants, there exist two trivial solutions of
(17) out of the discontinuity curve, and RH-condition gives

γ̇(t) =
u2d − u2l

2(ud − ul)
=
ud + ul

2
,

i.e. γ̇(t) = ct, c = ul+ud

2
and (see Fig. 7)

(18) u(x, t) =

{

ul, x < ct

ud, x > ct,

Figure 7. Shock wave
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If ul < ud, then except the above solution there exist also the
following solutions (Fig. 8):

(19) u(x, t) =











ul, x < ult
x
t
, ult ≤ x ≤ udt

ud, x > udt

or, (Fig. 9))

Figure 8. Rarefaction wave

(20) u(x, t) =



















ul, x < ult
x
f
, ult ≤ x ≤ at

a, at ≤ x ≤ a+ud

2
t

ud, x ≥ a+ud

2
t,

for some a ∈ (ul, ud).
One can see that there is no uniqueness of solution in the case

ul < ud. That problem (finding admissible or so called “entropy”
solutions) will be approached later on.
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Figure 9. Non-entropic weak solution

Example 7. Let us multiply partial differential equation(17) by u
and transfer it into divergence form

ut + uux = 0 / · u
uut + u2ux = 0
(1

2
u2
)

t
+
(1

3
u3
)

x
= 0.

After nonlinear change of variables 1
2
u2 7→ v, one gets the following

conservation law

vt + (
2
√
2

3
v3/2)x = 0

v
∣

∣

∣

t=0
=

{

vl =
1
2
u2l , x < 0

vd =
1
2
u2d, x > 0.

RH-conditions give the following speed of shock wave c and the
discontinuity line is γ = ct:

γ̇(t) =
[3
2
v3/2]

[v]
=

2
√
2

3
1
2
(u2d)

3/2 − 2
√
2

3
1
2
(u2l )

3/2

1
2
(u2d − u2l )

=
1
3
(u3d − u3l )

1
2
(u2d − u2l )

6= ul + ud
2

in general.
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(For example, for ul = 1, ud = 0 one has
1

3

1

2

6= 1
2
.)

This was an “unpleasant” example, because simple but nonlinear
transformations of variables do not preserve solutions.

Because of that a precise interpretation of a physical model is of
the crucial importance.

Solution of equation (15) of the form u(x, t) = ũ(x
t
) is called self-

similar solution. Now we shall try to find such a solution of (15) in a
simple way, just by substituting a function of this form into the equa-
tion. After the differentiation we have

− x

t2
ũ′
(x

t

)

+ f ′
(

ũ
(x

t

))1

t
ũ′
(x

t

)

= 0

after multiplication of the equation with

t and the substitution
x

t
7→ y one gets ODE

ũ′(y)(f ′(ũ(y))− y) = 0

After neglecting constant, so called trivial solutions (ũ′ 6= 0), one
can see that solution is given by the implicit relation

f ′(ũ) = y, ie. ũ(y) = f ′−1(y),

if f ′ is bijection (locally).
One can interpret the initial data in the following way:

(21) u(x, 0) =

{

ul, x < 0

ud, x > 0
=⇒ ũ(+∞) = ud, ũ(−∞) = ul.

If f ′′ > 0 (f is convex), then f ′ is an increasing function and solution
ũ to the equation satisfying (21) exists if ul < ud. Such solution is called
centered rarefaction wave (the initial data has a singularity at zero).
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